Unifying quantum spatial search, state transfer and uniform sampling on graphs: simple and exact
- URL: http://arxiv.org/abs/2407.02530v1
- Date: Mon, 1 Jul 2024 06:09:19 GMT
- Title: Unifying quantum spatial search, state transfer and uniform sampling on graphs: simple and exact
- Authors: Qingwen Wang, Ying Jiang, Lvzhou Li,
- Abstract summary: This article presents a novel and succinct algorithmic framework via alternating quantum walks.
It unifies quantum spatial search, state transfer and uniform sampling on a large class of graphs.
The approach is easy to use since it has a succinct formalism that depends only on the depth of the Laplacian eigenvalue set of the graph.
- Score: 2.871419116565751
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This article presents a novel and succinct algorithmic framework via alternating quantum walks, unifying quantum spatial search, state transfer and uniform sampling on a large class of graphs. Using the framework, we can achieve exact uniform sampling over all vertices and perfect state transfer between any two vertices, provided that eigenvalues of Laplacian matrix of the graph are all integers. Furthermore, if the graph is vertex-transitive as well, then we can achieve deterministic quantum spatial search that finds a marked vertex with certainty. In contrast, existing quantum search algorithms generally has a certain probability of failure. Even if the graph is not vertex-transitive, such as the complete bipartite graph, we can still adjust the algorithmic framework to obtain deterministic spatial search, which thus shows the flexibility of it. Besides unifying and improving plenty of previous results, our work provides new results on more graphs. The approach is easy to use since it has a succinct formalism that depends only on the depth of the Laplacian eigenvalue set of the graph, and may shed light on the solution of more problems related to graphs.
Related papers
- Graph Generation via Spectral Diffusion [51.60814773299899]
We present GRASP, a novel graph generative model based on 1) the spectral decomposition of the graph Laplacian matrix and 2) a diffusion process.
Specifically, we propose to use a denoising model to sample eigenvectors and eigenvalues from which we can reconstruct the graph Laplacian and adjacency matrix.
Our permutation invariant model can also handle node features by concatenating them to the eigenvectors of each node.
arXiv Detail & Related papers (2024-02-29T09:26:46Z) - Universal approach to deterministic spatial search via alternating
quantum walks [2.940962519388297]
We propose a novel approach for designing deterministic quantum search algorithms on a variety of graphs via alternating quantum walks.
Our approach is universal because it does not require an instance-specific analysis for different graphs.
arXiv Detail & Related papers (2023-07-30T05:14:19Z) - Quantum walk based state transfer algorithms on the complete M-partite
graph [0.0]
We investigate coined quantum walk search and state transfer algorithms, focusing on the complete $M$-partite graph with $N$ vertices in each partition.
We show that when the sender and the receiver are in different partitions the algorithm succeeds with fidelity approaching unity for a large graph.
However, when the sender and the receiver are in the same partition the fidelity does not reach exactly one.
arXiv Detail & Related papers (2022-12-01T14:52:49Z) - Unveiling the Sampling Density in Non-Uniform Geometric Graphs [69.93864101024639]
We consider graphs as geometric graphs: nodes are randomly sampled from an underlying metric space, and any pair of nodes is connected if their distance is less than a specified neighborhood radius.
In a social network communities can be modeled as densely sampled areas, and hubs as nodes with larger neighborhood radius.
We develop methods to estimate the unknown sampling density in a self-supervised fashion.
arXiv Detail & Related papers (2022-10-15T08:01:08Z) - Quantitative approach to Grover's quantum walk on graphs [62.997667081978825]
We study Grover's search algorithm focusing on continuous-time quantum walk on graphs.
Instead of finding specific graph topologies convenient for the related quantum walk, we fix the graph topology and vary the underlying graph endowed Laplacians.
arXiv Detail & Related papers (2022-07-04T19:33:06Z) - Deterministic spatial search using alternating quantum walks [0.0]
We prove that for a set of optimal quantum walk times and marked vertex phase shifts, a deterministic algorithm for structured spatial search is established.
This improves on the original spatial search algorithm on the same class of graphs, which we show can only amplify to 50% probability.
It is expected that this new framework can be readily extended to deterministic spatial search on other families of graph structures.
arXiv Detail & Related papers (2021-04-08T14:32:48Z) - Quantum walk-based search algorithms with multiple marked vertices [0.0]
The quantum walk is a powerful tool to develop quantum algorithms.
We extend previous analytical methods based on Szegedy's quantum walk.
Two examples based on the coined quantum walk on two-dimensional lattices and hypercubes show the details of our method.
arXiv Detail & Related papers (2021-03-23T22:57:07Z) - Online Dense Subgraph Discovery via Blurred-Graph Feedback [87.9850024070244]
We introduce a novel learning problem for dense subgraph discovery.
We first propose a edge-time algorithm that obtains a nearly-optimal solution with high probability.
We then design a more scalable algorithm with a theoretical guarantee.
arXiv Detail & Related papers (2020-06-24T11:37:33Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z) - Wasserstein-based Graph Alignment [56.84964475441094]
We cast a new formulation for the one-to-many graph alignment problem, which aims at matching a node in the smaller graph with one or more nodes in the larger graph.
We show that our method leads to significant improvements with respect to the state-of-the-art algorithms for each of these tasks.
arXiv Detail & Related papers (2020-03-12T22:31:59Z) - Search on Vertex-Transitive Graphs by Lackadaisical Quantum Walk [0.0]
The lackadaisical quantum walk is a discrete-time, coined quantum walk on a graph.
It can improve spatial search on the complete graph, discrete torus, cycle, and regular complete bipartite graph.
We present a number of numerical simulations supporting this hypothesis.
arXiv Detail & Related papers (2020-02-26T00:10:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.