Towards More Realistic Extraction Attacks: An Adversarial Perspective
- URL: http://arxiv.org/abs/2407.02596v2
- Date: Fri, 08 Nov 2024 22:36:16 GMT
- Title: Towards More Realistic Extraction Attacks: An Adversarial Perspective
- Authors: Yash More, Prakhar Ganesh, Golnoosh Farnadi,
- Abstract summary: This paper revisits extraction attacks from an adversarial perspective.
We find significant churn in extraction trends, i.e., even unintuitive changes to the prompt.
Even with mitigation strategies like data deduplication, we find the same escalation of extraction risks against a real-world adversary.
- Score: 4.932130498861987
- License:
- Abstract: Language models are prone to memorizing parts of their training data which makes them vulnerable to extraction attacks. Existing research often examines isolated setups--such as evaluating extraction risks from a single model or with a fixed prompt design. However, a real-world adversary could access models across various sizes and checkpoints, as well as exploit prompt sensitivity, resulting in a considerably larger attack surface than previously studied. In this paper, we revisit extraction attacks from an adversarial perspective, focusing on how to leverage the brittleness of language models and the multi-faceted access to the underlying data. We find significant churn in extraction trends, i.e., even unintuitive changes to the prompt, or targeting smaller models and earlier checkpoints, can extract distinct information. By combining information from multiple attacks, our adversary is able to increase the extraction risks by up to $2 \times$. Furthermore, even with mitigation strategies like data deduplication, we find the same escalation of extraction risks against a real-world adversary. We conclude with a set of case studies, including detecting pre-training data, copyright violations, and extracting personally identifiable information, showing how our more realistic adversary can outperform existing adversaries in the literature.
Related papers
- Privacy Re-identification Attacks on Tabular GANs [0.0]
Generative models are subject to overfitting and thus may potentially leak sensitive information from the training data.
We investigate the privacy risks that can potentially arise from the use of generative adversarial networks (GANs) for creating synthetic datasets.
arXiv Detail & Related papers (2024-03-31T14:14:00Z) - Unlearning Backdoor Threats: Enhancing Backdoor Defense in Multimodal Contrastive Learning via Local Token Unlearning [49.242828934501986]
Multimodal contrastive learning has emerged as a powerful paradigm for building high-quality features.
backdoor attacks subtly embed malicious behaviors within the model during training.
We introduce an innovative token-based localized forgetting training regime.
arXiv Detail & Related papers (2024-03-24T18:33:15Z) - Transpose Attack: Stealing Datasets with Bidirectional Training [4.166238443183223]
We show that adversaries can exfiltrate datasets from protected learning environments under the guise of legitimate models.
We propose a novel approach for detecting infected models.
arXiv Detail & Related papers (2023-11-13T15:14:50Z) - Backdoor Attacks Against Incremental Learners: An Empirical Evaluation
Study [79.33449311057088]
This paper empirically reveals the high vulnerability of 11 typical incremental learners against poisoning-based backdoor attack on 3 learning scenarios.
The defense mechanism based on activation clustering is found to be effective in detecting our trigger pattern to mitigate potential security risks.
arXiv Detail & Related papers (2023-05-28T09:17:48Z) - Careful What You Wish For: on the Extraction of Adversarially Trained
Models [2.707154152696381]
Recent attacks on Machine Learning (ML) models pose several security and privacy threats.
We propose a framework to assess extraction attacks on adversarially trained models.
We show that adversarially trained models are more vulnerable to extraction attacks than models obtained under natural training circumstances.
arXiv Detail & Related papers (2022-07-21T16:04:37Z) - Adversarial Robustness of Deep Reinforcement Learning based Dynamic
Recommender Systems [50.758281304737444]
We propose to explore adversarial examples and attack detection on reinforcement learning-based interactive recommendation systems.
We first craft different types of adversarial examples by adding perturbations to the input and intervening on the casual factors.
Then, we augment recommendation systems by detecting potential attacks with a deep learning-based classifier based on the crafted data.
arXiv Detail & Related papers (2021-12-02T04:12:24Z) - Detecting adversaries in Crowdsourcing [71.20185379303479]
This work investigates the effects of adversaries on crowdsourced classification, under the popular Dawid and Skene model.
The adversaries are allowed to deviate arbitrarily from the considered crowdsourcing model, and may potentially cooperate.
We develop an approach that leverages the structure of second-order moments of annotator responses, to identify large numbers of adversaries, and mitigate their impact on the crowdsourcing task.
arXiv Detail & Related papers (2021-10-07T15:07:07Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
This paper presents a visual framework to investigate neural network models subjected to adversarial examples.
We show how observing these elements can quickly pinpoint exploited areas in a model.
arXiv Detail & Related papers (2021-03-18T13:04:21Z) - Adversarial Targeted Forgetting in Regularization and Generative Based
Continual Learning Models [2.8021833233819486]
Continual (or "incremental") learning approaches are employed when additional knowledge or tasks need to be learned from subsequent batches or from streaming data.
We show that an intelligent adversary can take advantage of a continual learning algorithm's capabilities of retaining existing knowledge over time.
We show that the adversary can create a "false memory" about any task by inserting carefully-designed backdoor samples to the test instances of that task.
arXiv Detail & Related papers (2021-02-16T18:45:01Z) - Sampling Attacks: Amplification of Membership Inference Attacks by
Repeated Queries [74.59376038272661]
We introduce sampling attack, a novel membership inference technique that unlike other standard membership adversaries is able to work under severe restriction of no access to scores of the victim model.
We show that a victim model that only publishes the labels is still susceptible to sampling attacks and the adversary can recover up to 100% of its performance.
For defense, we choose differential privacy in the form of gradient perturbation during the training of the victim model as well as output perturbation at prediction time.
arXiv Detail & Related papers (2020-09-01T12:54:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.