No Training, No Problem: Rethinking Classifier-Free Guidance for Diffusion Models
- URL: http://arxiv.org/abs/2407.02687v1
- Date: Tue, 2 Jul 2024 22:04:00 GMT
- Title: No Training, No Problem: Rethinking Classifier-Free Guidance for Diffusion Models
- Authors: Seyedmorteza Sadat, Manuel Kansy, Otmar Hilliges, Romann M. Weber,
- Abstract summary: We revisit the core principles of CFG and introduce a new method, independent condition guidance (ICG)
ICG provides the benefits of CFG without the need for any special training procedures.
Our approach streamlines the training process of conditional diffusion models and can also be applied during inference on any pre-trained conditional model.
- Score: 25.301443993960277
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Classifier-free guidance (CFG) has become the standard method for enhancing the quality of conditional diffusion models. However, employing CFG requires either training an unconditional model alongside the main diffusion model or modifying the training procedure by periodically inserting a null condition. There is also no clear extension of CFG to unconditional models. In this paper, we revisit the core principles of CFG and introduce a new method, independent condition guidance (ICG), which provides the benefits of CFG without the need for any special training procedures. Our approach streamlines the training process of conditional diffusion models and can also be applied during inference on any pre-trained conditional model. Additionally, by leveraging the time-step information encoded in all diffusion networks, we propose an extension of CFG, called time-step guidance (TSG), which can be applied to any diffusion model, including unconditional ones. Our guidance techniques are easy to implement and have the same sampling cost as CFG. Through extensive experiments, we demonstrate that ICG matches the performance of standard CFG across various conditional diffusion models. Moreover, we show that TSG improves generation quality in a manner similar to CFG, without relying on any conditional information.
Related papers
- Contrastive CFG: Improving CFG in Diffusion Models by Contrasting Positive and Negative Concepts [55.298031232672734]
As-Free Guidance (CFG) has proven effective in conditional diffusion model sampling for improved condition alignment.
We present a novel method to enhance negative CFG guidance using contrastive loss.
arXiv Detail & Related papers (2024-11-26T03:29:27Z) - Rectified Diffusion Guidance for Conditional Generation [62.00207951161297]
We revisit the theory behind CFG and rigorously confirm that the improper configuration of the combination coefficients (i.e., the widely used summing-to-one version) brings about expectation shift of the generative distribution.
We propose ReCFG with a relaxation on the guidance coefficients such that denoising with ReCFG strictly aligns with the diffusion theory.
That way the rectified coefficients can be readily pre-computed via traversing the observed data, leaving the sampling speed barely affected.
arXiv Detail & Related papers (2024-10-24T13:41:32Z) - Eliminating Oversaturation and Artifacts of High Guidance Scales in Diffusion Models [27.640009920058187]
We revisit the CFG update rule and introduce modifications to address this issue.
We propose down-weighting the parallel component to achieve high-quality generations without oversaturation.
We also introduce a new rescaling momentum method for the CFG update rule based on this insight.
arXiv Detail & Related papers (2024-10-03T12:06:29Z) - Adding Conditional Control to Diffusion Models with Reinforcement Learning [59.295203871547336]
Diffusion models are powerful generative models that allow for precise control over the characteristics of the generated samples.
This work presents a novel method based on reinforcement learning (RL) to add additional controls, leveraging an offline dataset.
arXiv Detail & Related papers (2024-06-17T22:00:26Z) - Adaptive Guidance: Training-free Acceleration of Conditional Diffusion
Models [44.58960475893552]
"Adaptive Guidance" (AG) is an efficient variant of computation-Free Guidance (CFG)
AG preserves CFG's image quality while reducing by 25%.
" LinearAG" offers even cheaper inference at the cost of deviating from the baseline model.
arXiv Detail & Related papers (2023-12-19T17:08:48Z) - Manifold Preserving Guided Diffusion [121.97907811212123]
Conditional image generation still faces challenges of cost, generalizability, and the need for task-specific training.
We propose Manifold Preserving Guided Diffusion (MPGD), a training-free conditional generation framework.
arXiv Detail & Related papers (2023-11-28T02:08:06Z) - Bridging the Gap: Addressing Discrepancies in Diffusion Model Training
for Classifier-Free Guidance [1.6804613362826175]
Diffusion models have emerged as a pivotal advancement in generative models.
In this paper we aim to underscore a discrepancy between conventional training methods and the desired conditional sampling behavior.
We introduce an updated loss function that better aligns training objectives with sampling behaviors.
arXiv Detail & Related papers (2023-11-02T02:03:12Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - FreeDoM: Training-Free Energy-Guided Conditional Diffusion Model [59.317041523253245]
We propose a training-Free conditional Diffusion Model (FreeDoM) used for various conditions.
Specifically, we leverage off-the-shelf pre-trained networks, such as a face detection model, to construct time-independent energy functions.
Our proposed FreeDoM has a broader range of applications than existing training-free methods.
arXiv Detail & Related papers (2023-03-17T08:38:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.