A versatile quantum microwave photonic signal processing platform based on coincidence window selection technique
- URL: http://arxiv.org/abs/2407.02787v1
- Date: Wed, 3 Jul 2024 03:26:53 GMT
- Title: A versatile quantum microwave photonic signal processing platform based on coincidence window selection technique
- Authors: Xinghua Li, Yifan Guo, Xiao Xiang, Runai Quan, Mingtao Cao, Ruifang Dong, Tao Liu, Ming Li, Shougang Zhang,
- Abstract summary: Quantum microwave photonics (QMWP) is an innovative approach that combines energy-time entangled biphoton sources as the optical carrier with time-correlated single-photon detection for high-speed RF signal recovery.
This paper explores the versatility of processing the quantum microwave photonic signal by utilizing coincidence window selection on the biphoton coincidence distribution.
- Score: 7.502273736671861
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum microwave photonics (QMWP) is an innovative approach that combines energy-time entangled biphoton sources as the optical carrier with time-correlated single-photon detection for high-speed RF signal recovery. This groundbreaking method offers unique advantages such as nonlocal RF signal encoding and robust resistance to dispersion-induced frequency fading. This paper explores the versatility of processing the quantum microwave photonic signal by utilizing coincidence window selection on the biphoton coincidence distribution. The demonstration includes finely-tunable RF phase shifting, flexible multi-tap transversal filtering (with up to 15 taps), and photonically implemented RF mixing, leveraging the nonlocal RF mapping characteristic of QMWP. These accomplishments significantly enhance the capability of microwave photonic systems in processing ultra-weak signals, opening up new possibilities for various applications.
Related papers
- Quantum microwave photonic mixer with a large spurious-free dynamic range [7.502273736671861]
Microwave frequency mixing plays an essential role in modern radars and wireless communication systems.
Quantum microwave photonics technique offers a promising solution for improving spurious-free dynamic range.
We demonstrate two types of quantum microwave photonic mixers based on the configuration of the intensity modulators.
arXiv Detail & Related papers (2024-07-03T03:03:03Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Unmixing Optical Signals from Undersampled Volumetric Measurements by Filtering the Pixel Latent Variables [5.74378659752939]
Latent Unmixing is a new approach which applies a band-pass filter to the latent space of a multi-spectralal neural network.
It enables better isolation and quantification of individual signal contributions, especially in the context of undersampled distributions.
We showcase the method's practical use in experimental physics through two test cases that highlight the versatility of our approach.
arXiv Detail & Related papers (2023-12-08T20:34:37Z) - Ultrafast electro-optic Time-Frequency Fractional Fourier Imaging at the
Single-Photon Level [0.0]
Fractional Fourier Transform (FRT) corresponds to an arbitrary-angle rotation in the phase space, e.g. the time-frequency (TF) space.
A versatile low-noise single-photon-compatible implementation of the FRT is presented.
arXiv Detail & Related papers (2023-07-03T16:29:27Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - A proof-of-principle demonstration of quantum microwave photonics [7.271477373654159]
Radio-over-fiber technology provides high bandwidth, low-loss, and long-distance propagation capability.
Ultrashort pulses as the optical carrier results in the severe vulnerability of high-frequency RF signals to fiber dispersion.
Time-energy entangled biphoton source as the optical carrier and combined with the single-photon detection technique, a quantum microwave photonics method is proposed.
arXiv Detail & Related papers (2022-01-28T13:25:34Z) - Telecom-band Hyperentangled Photon Pairs from a Fiber-based Source [49.06242674127539]
We experimentally demonstrate the generation of telecom-band biphotons hyperentangled in both the polarization and frequency DoFs.
The states produced by our hyperentanglement source can enable protocols such as dense coding and high-dimensional quantum key distribution.
arXiv Detail & Related papers (2021-12-06T21:37:43Z) - Quantum microwave photonics [9.855552660192087]
We have demonstrated a quantum microwave photonic processing system using a low jitter superconducting nanowire single photon detector (SNSPD) and a time-correlated single-photon counting module.
This method uniquely combines extreme optical sensitivity, down to a single-photon level (below -100 dBm), and wide processing bandwidth, twice higher than the transmission bandwidth of the cable.
arXiv Detail & Related papers (2021-01-02T08:55:30Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.