Euler's Elastica Based Cartoon-Smooth-Texture Image Decomposition
- URL: http://arxiv.org/abs/2407.02794v1
- Date: Wed, 3 Jul 2024 03:42:33 GMT
- Title: Euler's Elastica Based Cartoon-Smooth-Texture Image Decomposition
- Authors: Roy Y. He, Hao Liu,
- Abstract summary: We propose a novel model for decomposing grayscale images into three distinct components.
The structural part represents strong boundaries and regions with strong light-to-dark transitions; the smooth part, capturing soft shadows and shadows; and the oscillatory, characterizing textures and noise.
- Score: 4.829677240798159
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel model for decomposing grayscale images into three distinct components: the structural part, representing sharp boundaries and regions with strong light-to-dark transitions; the smooth part, capturing soft shadows and shades; and the oscillatory part, characterizing textures and noise. To capture the homogeneous structures, we introduce a combination of $L^0$-gradient and curvature regularization on level lines. This new regularization term enforces strong sparsity on the image gradient while reducing the undesirable staircase effects as well as preserving the geometry of contours. For the smoothly varying component, we utilize the $L^2$-norm of the Laplacian that favors isotropic smoothness. To capture the oscillation, we use the inverse Sobolev seminorm. To solve the associated minimization problem, we design an efficient operator-splitting algorithm. Our algorithm effectively addresses the challenging non-convex non-smooth problem by separating it into sub-problems. Each sub-problem can be solved either directly using closed-form solutions or efficiently using the Fast Fourier Transform (FFT). We provide systematic experiments, including ablation and comparison studies, to analyze our model's behaviors and demonstrate its effectiveness as well as efficiency.
Related papers
- GUS-IR: Gaussian Splatting with Unified Shading for Inverse Rendering [83.69136534797686]
We present GUS-IR, a novel framework designed to address the inverse rendering problem for complicated scenes featuring rough and glossy surfaces.
This paper starts by analyzing and comparing two prominent shading techniques popularly used for inverse rendering, forward shading and deferred shading.
We propose a unified shading solution that combines the advantages of both techniques for better decomposition.
arXiv Detail & Related papers (2024-11-12T01:51:05Z) - Parallax-Tolerant Unsupervised Deep Image Stitching [57.76737888499145]
We propose UDIS++, a parallax-tolerant unsupervised deep image stitching technique.
First, we propose a robust and flexible warp to model the image registration from global homography to local thin-plate spline motion.
To further eliminate the parallax artifacts, we propose to composite the stitched image seamlessly by unsupervised learning for seam-driven composition masks.
arXiv Detail & Related papers (2023-02-16T10:40:55Z) - CNN-based Euler's Elastica Inpainting with Deep Energy and Deep Image
Prior [10.848775419008442]
We design the first neural algorithm that simulates inpainting with Euler's Elastica.
We use the deep energy concept which employs the variational energy as neural network loss.
Our results are on par with state-of-the-art algorithms on elastica-based shape completion.
arXiv Detail & Related papers (2022-07-16T12:11:28Z) - Smooth over-parameterized solvers for non-smooth structured optimization [3.756550107432323]
Non-smoothness encodes structural constraints on the solutions, such as sparsity, group sparsity, low-rank edges and sharp edges.
We operate a non-weighted but smooth overparametrization of the underlying nonsmooth optimization problems.
Our main contribution is to apply the Variable Projection (VarPro) which defines a new formulation by explicitly minimizing over part of the variables.
arXiv Detail & Related papers (2022-05-03T09:23:07Z) - Smooth Bilevel Programming for Sparse Regularization [5.177947445379688]
Iteratively reweighted least square (IRLS) is a popular approach to solve sparsity-enforcing regression problems in machine learning.
We show how a surprisingly reparametrization of IRLS, coupled with a bilevel scheme, achieves topranging of sparsity.
arXiv Detail & Related papers (2021-06-02T19:18:22Z) - Efficient and Differentiable Shadow Computation for Inverse Problems [64.70468076488419]
Differentiable geometric computation has received increasing interest for image-based inverse problems.
We propose an efficient yet efficient approach for differentiable visibility and soft shadow computation.
As our formulation is differentiable, it can be used to solve inverse problems such as texture, illumination, rigid pose, and deformation recovery from images.
arXiv Detail & Related papers (2021-04-01T09:29:05Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
We introduce a Cogradient Descent algorithm (CoGD) to address the bilinear problem.
We solve one variable by considering its coupling relationship with the other, leading to a synchronous gradient descent.
Our algorithm is applied to solve problems with one variable under the sparsity constraint.
arXiv Detail & Related papers (2020-06-16T13:41:54Z) - Understanding Integrated Gradients with SmoothTaylor for Deep Neural
Network Attribution [70.78655569298923]
Integrated Gradients as an attribution method for deep neural network models offers simple implementability.
It suffers from noisiness of explanations which affects the ease of interpretability.
The SmoothGrad technique is proposed to solve the noisiness issue and smoothen the attribution maps of any gradient-based attribution method.
arXiv Detail & Related papers (2020-04-22T10:43:19Z) - Accelerating Smooth Games by Manipulating Spectral Shapes [51.366219027745174]
We use matrix iteration theory to characterize acceleration in smooth games.
We describe gradient-based methods, such as extragradient, as transformations on the spectral shape.
We propose an optimal algorithm for bilinear games.
arXiv Detail & Related papers (2020-01-02T19:21:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.