LMBF-Net: A Lightweight Multipath Bidirectional Focal Attention Network for Multifeatures Segmentation
- URL: http://arxiv.org/abs/2407.02871v1
- Date: Wed, 3 Jul 2024 07:37:09 GMT
- Title: LMBF-Net: A Lightweight Multipath Bidirectional Focal Attention Network for Multifeatures Segmentation
- Authors: Tariq M Khan, Shahzaib Iqbal, Syed S. Naqvi, Imran Razzak, Erik Meijering,
- Abstract summary: Retinal diseases can cause irreversible vision loss in both eyes if not diagnosed and treated early.
Current deep learning techniques for segmenting retinal images with many labels and attributes have poor detection accuracy and generalisability.
This paper presents a multipath convolutional neural network for multifeature segmentation.
- Score: 15.091476025563528
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retinal diseases can cause irreversible vision loss in both eyes if not diagnosed and treated early. Since retinal diseases are so complicated, retinal imaging is likely to show two or more abnormalities. Current deep learning techniques for segmenting retinal images with many labels and attributes have poor detection accuracy and generalisability. This paper presents a multipath convolutional neural network for multifeature segmentation. The proposed network is lightweight and spatially sensitive to information. A patch-based implementation is used to extract local image features, and focal modulation attention blocks are incorporated between the encoder and the decoder for improved segmentation. Filter optimisation is used to prevent filter overlaps and speed up model convergence. A combination of convolution operations and group convolution operations is used to reduce computational costs. This is the first robust and generalisable network capable of segmenting multiple features of fundus images (including retinal vessels, microaneurysms, optic discs, haemorrhages, hard exudates, and soft exudates). The results of our experimental evaluation on more than ten publicly available datasets with multiple features show that the proposed network outperforms recent networks despite having a small number of learnable parameters.
Related papers
- Slicer Networks [8.43960865813102]
We propose the Slicer Network, a novel architecture for medical image analysis.
The Slicer Network strategically refines and upsamples feature maps via a splatting-blurring-slicing process.
Experiments across different medical imaging applications have verified the Slicer Network's improved accuracy and efficiency.
arXiv Detail & Related papers (2024-01-18T09:50:26Z) - LMBiS-Net: A Lightweight Multipath Bidirectional Skip Connection based
CNN for Retinal Blood Vessel Segmentation [0.0]
Blinding eye diseases are often correlated with altered retinal morphology, which can be clinically identified by segmenting retinal structures in fundus images.
Deep learning has shown promise in medical image segmentation, but its reliance on repeated convolution and pooling operations can hinder the representation of edge information.
We propose a lightweight pixel-level CNN named LMBiS-Net for the segmentation of retinal vessels with an exceptionally low number of learnable parameters.
arXiv Detail & Related papers (2023-09-10T09:03:53Z) - Scale-aware Super-resolution Network with Dual Affinity Learning for
Lesion Segmentation from Medical Images [50.76668288066681]
We present a scale-aware super-resolution network to adaptively segment lesions of various sizes from low-resolution medical images.
Our proposed network achieved consistent improvements compared to other state-of-the-art methods.
arXiv Detail & Related papers (2023-05-30T14:25:55Z) - M$^{2}$SNet: Multi-scale in Multi-scale Subtraction Network for Medical
Image Segmentation [73.10707675345253]
We propose a general multi-scale in multi-scale subtraction network (M$2$SNet) to finish diverse segmentation from medical image.
Our method performs favorably against most state-of-the-art methods under different evaluation metrics on eleven datasets of four different medical image segmentation tasks.
arXiv Detail & Related papers (2023-03-20T06:26:49Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - HistoSeg : Quick attention with multi-loss function for multi-structure
segmentation in digital histology images [0.696194614504832]
Medical image segmentation assists in computer-aided diagnosis, surgeries, and treatment.
We proposed an generalization-Decoder Network, Quick Attention Module and a Multi Loss Function.
We evaluate the capability of our proposed network on two publicly available datasets for medical image segmentation MoNuSeg and GlaS.
arXiv Detail & Related papers (2022-09-01T21:10:00Z) - FuNNscope: Visual microscope for interactively exploring the loss
landscape of fully connected neural networks [77.34726150561087]
We show how to explore high-dimensional landscape characteristics of neural networks.
We generalize observations on small neural networks to more complex systems.
An interactive dashboard opens up a number of possible application networks.
arXiv Detail & Related papers (2022-04-09T16:41:53Z) - (M)SLAe-Net: Multi-Scale Multi-Level Attention embedded Network for
Retinal Vessel Segmentation [0.0]
We propose a multi-scale, multi-level attention embedded CNN architecture ((M)SLAe-Net) to address the issue of multi-stage processing.
We do this by extracting features at multiple scales and multiple levels of the network, enabling our model to holistically extracts the local and global features.
Our unique network design and novel D-DPP module with efficient task-specific loss function for thin vessels enabled our model for better cross data performance.
arXiv Detail & Related papers (2021-09-05T14:29:00Z) - Multiscale Detection of Cancerous Tissue in High Resolution Slide Scans [0.0]
We present an algorithm for multi-scale tumor (chimeric cell) detection in high resolution slide scans.
Our approach modifies the effective receptive field at different layers in a CNN so that objects with a broad range of varying scales can be detected in a single forward pass.
arXiv Detail & Related papers (2020-10-01T18:56:46Z) - NuI-Go: Recursive Non-Local Encoder-Decoder Network for Retinal Image
Non-Uniform Illumination Removal [96.12120000492962]
The quality of retinal images is often clinically unsatisfactory due to eye lesions and imperfect imaging process.
One of the most challenging quality degradation issues in retinal images is non-uniform illumination.
We propose a non-uniform illumination removal network for retinal image, called NuI-Go.
arXiv Detail & Related papers (2020-08-07T04:31:33Z) - Neural Sparse Representation for Image Restoration [116.72107034624344]
Inspired by the robustness and efficiency of sparse coding based image restoration models, we investigate the sparsity of neurons in deep networks.
Our method structurally enforces sparsity constraints upon hidden neurons.
Experiments show that sparse representation is crucial in deep neural networks for multiple image restoration tasks.
arXiv Detail & Related papers (2020-06-08T05:15:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.