Probing the Feasibility of Multilingual Speaker Anonymization
- URL: http://arxiv.org/abs/2407.02937v1
- Date: Wed, 3 Jul 2024 09:12:53 GMT
- Title: Probing the Feasibility of Multilingual Speaker Anonymization
- Authors: Sarina Meyer, Florian Lux, Ngoc Thang Vu,
- Abstract summary: We extend a state-of-the-art anonymization system to nine languages.
Experiments testing the robustness of the anonymized speech against privacy attacks and speech deterioration show an overall success of this system for all languages.
- Score: 28.445925953669825
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In speaker anonymization, speech recordings are modified in a way that the identity of the speaker remains hidden. While this technology could help to protect the privacy of individuals around the globe, current research restricts this by focusing almost exclusively on English data. In this study, we extend a state-of-the-art anonymization system to nine languages by transforming language-dependent components to their multilingual counterparts. Experiments testing the robustness of the anonymized speech against privacy attacks and speech deterioration show an overall success of this system for all languages. The results suggest that speaker embeddings trained on English data can be applied across languages, and that the anonymization performance for a language is mainly affected by the quality of the speech synthesis component used for it.
Related papers
- You Are What You Say: Exploiting Linguistic Content for VoicePrivacy Attacks [9.235490630909323]
We assess the impact of intra-speaker linguistic content similarity in the attacker training and evaluation datasets.<n>On the VoicePrivacy Attacker Challenge datasets, our method achieves a mean equal error rate (EER) of 35%, with certain speakers attaining EERs as low as 2%.<n>Our study suggests reworking the VoicePrivacy datasets to ensure a fair and unbiased evaluation and challenge the reliance on global EER for privacy evaluations.
arXiv Detail & Related papers (2025-06-11T08:46:18Z) - LASPA: Language Agnostic Speaker Disentanglement with Prefix-Tuned Cross-Attention [2.199918533021483]
The overlap between vocal traits such as accent, vocal anatomy, and a language's phonetic structure complicates separating linguistic and speaker information.<n>Disentangling these components can significantly improve speaker recognition accuracy.<n>We propose a novel disentanglement learning strategy that integrates joint learning through prefix-tuned cross-attention.
arXiv Detail & Related papers (2025-06-02T10:59:31Z) - Improving Speech Emotion Recognition in Under-Resourced Languages via Speech-to-Speech Translation with Bootstrapping Data Selection [49.27067541740956]
Speech Emotion Recognition (SER) is a crucial component in developing general-purpose AI agents capable of natural human-computer interaction.
Building robust multilingual SER systems remains challenging due to the scarcity of labeled data in languages other than English and Chinese.
We propose an approach to enhance SER performance in low SER resource languages by leveraging data from high-resource languages.
arXiv Detail & Related papers (2024-09-17T08:36:45Z) - A Benchmark for Multi-speaker Anonymization [9.990701310620368]
We present an attempt to provide a multi-speaker anonymization benchmark for real-world applications.
A cascaded system uses speaker diarization to aggregate the speech of each speaker and speaker anonymization to conceal speaker privacy and preserve speech content.
Experiments conducted on both non-overlap simulated and real-world datasets demonstrate the effectiveness of the multi-speaker anonymization system.
arXiv Detail & Related papers (2024-07-08T04:48:43Z) - Anonymizing Speech: Evaluating and Designing Speaker Anonymization
Techniques [1.2691047660244337]
The growing use of voice user interfaces has led to a surge in the collection and storage of speech data.
This thesis proposes solutions for anonymizing speech and evaluating the degree of the anonymization.
arXiv Detail & Related papers (2023-08-05T16:14:17Z) - Evaluation of Speaker Anonymization on Emotional Speech [9.223908421919733]
Speech data carries a range of personal information, such as the speaker's identity and emotional state.
Current studies have addressed the topic of preserving speech privacy.
The VoicePrivacy 2020 Challenge (VPC) is about speaker anonymization.
arXiv Detail & Related papers (2023-04-15T20:50:29Z) - Multilingual Multiaccented Multispeaker TTS with RADTTS [21.234787964238645]
We present a multilingual, multiaccented, multispeaker speech synthesis model based on RADTTS.
We demonstrate an ability to control synthesized accent for any speaker in an open-source dataset comprising of 7 accents.
arXiv Detail & Related papers (2023-01-24T22:39:04Z) - Differentially Private Speaker Anonymization [44.90119821614047]
Sharing real-world speech utterances is key to the training and deployment of voice-based services.
Speaker anonymization aims to remove speaker information from a speech utterance while leaving its linguistic and prosodic attributes intact.
We show that disentanglement is indeed not perfect: linguistic and prosodic attributes still contain speaker information.
arXiv Detail & Related papers (2022-02-23T23:20:30Z) - Cross-lingual Transfer for Speech Processing using Acoustic Language
Similarity [81.51206991542242]
Cross-lingual transfer offers a compelling way to help bridge this digital divide.
Current cross-lingual algorithms have shown success in text-based tasks and speech-related tasks over some low-resource languages.
We propose a language similarity approach that can efficiently identify acoustic cross-lingual transfer pairs across hundreds of languages.
arXiv Detail & Related papers (2021-11-02T01:55:17Z) - Mandarin-English Code-switching Speech Recognition with Self-supervised
Speech Representation Models [55.82292352607321]
Code-switching (CS) is common in daily conversations where more than one language is used within a sentence.
This paper uses the recently successful self-supervised learning (SSL) methods to leverage many unlabeled speech data without CS.
arXiv Detail & Related papers (2021-10-07T14:43:35Z) - Speaker De-identification System using Autoencoders and Adversarial
Training [58.720142291102135]
We propose a speaker de-identification system based on adversarial training and autoencoders.
Experimental results show that combining adversarial learning and autoencoders increase the equal error rate of a speaker verification system.
arXiv Detail & Related papers (2020-11-09T19:22:05Z) - Self-Supervised Representations Improve End-to-End Speech Translation [57.641761472372814]
We show that self-supervised pre-trained features can consistently improve the translation performance.
Cross-lingual transfer allows to extend to a variety of languages without or with little tuning.
arXiv Detail & Related papers (2020-06-22T10:28:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.