Recompression Based JPEG Tamper Detection and Localization Using Deep Neural Network Eliminating Compression Factor Dependency
- URL: http://arxiv.org/abs/2407.02942v1
- Date: Wed, 3 Jul 2024 09:19:35 GMT
- Title: Recompression Based JPEG Tamper Detection and Localization Using Deep Neural Network Eliminating Compression Factor Dependency
- Authors: Jamimamul Bakas, Praneta Rawat, Kalyan Kokkalla, Ruchira Naskar,
- Abstract summary: We propose a Convolution Neural Network based deep learning architecture, which is capable of detecting the presence of re compression based forgery in JPEG images.
In this work, we also aim to localize the regions of image manipulation based on re compression features, using the trained neural network.
- Score: 2.8498944632323755
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we deal with the problem of re compression based image forgery detection, where some regions of an image are modified illegitimately, hence giving rise to presence of dual compression characteristics within a single image. There have been some significant researches in this direction, in the last decade. However, almost all existing techniques fail to detect this form of forgery, when the first compression factor is greater than the second. We address this problem in re compression based forgery detection, here Recently, Machine Learning techniques have started gaining a lot of importance in the domain of digital image forensics. In this work, we propose a Convolution Neural Network based deep learning architecture, which is capable of detecting the presence of re compression based forgery in JPEG images. The proposed architecture works equally efficiently, even in cases where the first compression ratio is greater than the second. In this work, we also aim to localize the regions of image manipulation based on re compression features, using the trained neural network. Our experimental results prove that the proposed method outperforms the state of the art, with respect to forgery detection and localization accuracy.
Related papers
- Semantic Ensemble Loss and Latent Refinement for High-Fidelity Neural Image Compression [58.618625678054826]
This study presents an enhanced neural compression method designed for optimal visual fidelity.
We have trained our model with a sophisticated semantic ensemble loss, integrating Charbonnier loss, perceptual loss, style loss, and a non-binary adversarial loss.
Our empirical findings demonstrate that this approach significantly improves the statistical fidelity of neural image compression.
arXiv Detail & Related papers (2024-01-25T08:11:27Z) - Transferable Learned Image Compression-Resistant Adversarial Perturbations [66.46470251521947]
Adversarial attacks can readily disrupt the image classification system, revealing the vulnerability of DNN-based recognition tasks.
We introduce a new pipeline that targets image classification models that utilize learned image compressors as pre-processing modules.
arXiv Detail & Related papers (2024-01-06T03:03:28Z) - A Deep Learning-based Compression and Classification Technique for Whole
Slide Histopathology Images [0.31498833540989407]
We build an ensemble of neural networks that enables a compressive autoencoder in a supervised fashion to retain a denser and more meaningful representation of the input histology images.
We test the compressed images using transfer learning-based classifiers and show that they provide promising accuracy and classification performance.
arXiv Detail & Related papers (2023-05-11T22:20:05Z) - Convolutional Neural Network (CNN) to reduce construction loss in JPEG
compression caused by Discrete Fourier Transform (DFT) [0.0]
Convolutional Neural Networks (CNN) have received more attention than most other types of deep neural networks.
In this work, an effective image compression method is purposed using autoencoders.
arXiv Detail & Related papers (2022-08-26T12:46:16Z) - Estimating the Resize Parameter in End-to-end Learned Image Compression [50.20567320015102]
We describe a search-free resizing framework that can further improve the rate-distortion tradeoff of recent learned image compression models.
Our results show that our new resizing parameter estimation framework can provide Bjontegaard-Delta rate (BD-rate) improvement of about 10% against leading perceptual quality engines.
arXiv Detail & Related papers (2022-04-26T01:35:02Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Implicit Neural Representations (INRs) have gained attention as a novel and effective representation for various data types.
We propose the first comprehensive compression pipeline based on INRs including quantization, quantization-aware retraining and entropy coding.
We find that our approach to source compression with INRs vastly outperforms similar prior work.
arXiv Detail & Related papers (2021-12-08T13:02:53Z) - Lossy Medical Image Compression using Residual Learning-based Dual
Autoencoder Model [12.762298148425794]
We propose a two-stage autoencoder based compressor-decompressor framework for compressing malaria RBC cell image patches.
The proposed residual-based dual autoencoder network is trained to extract the unique features which are then used to reconstruct the original image.
The algorithm exhibits a significant improvement in bit savings of 76%, 78%, 75% & 74% over JPEG-LS, JP2K-LM, CALIC and recent neural network approach respectively.
arXiv Detail & Related papers (2021-08-24T08:38:58Z) - Metric Learning for Anti-Compression Facial Forgery Detection [32.33501564446107]
We propose a novel anti-compression facial forgery detection framework.
It learns a compression-insensitive embedding feature space utilizing both original and compressed forgeries.
arXiv Detail & Related papers (2021-03-15T14:11:14Z) - Image Splicing Detection, Localization and Attribution via JPEG Primary
Quantization Matrix Estimation and Clustering [49.75353434786065]
Detection of inconsistencies of double JPEG artefacts across different image regions is often used to detect local image manipulations.
We propose an end-to-end system that can also distinguish regions coming from different donor images.
arXiv Detail & Related papers (2021-02-02T11:21:49Z) - Discernible Image Compression [124.08063151879173]
This paper aims to produce compressed images by pursuing both appearance and perceptual consistency.
Based on the encoder-decoder framework, we propose using a pre-trained CNN to extract features of the original and compressed images.
Experiments on benchmarks demonstrate that images compressed by using the proposed method can also be well recognized by subsequent visual recognition and detection models.
arXiv Detail & Related papers (2020-02-17T07:35:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.