Reinforcement Learning for Sequence Design Leveraging Protein Language Models
- URL: http://arxiv.org/abs/2407.03154v2
- Date: Sat, 16 Nov 2024 17:48:19 GMT
- Title: Reinforcement Learning for Sequence Design Leveraging Protein Language Models
- Authors: Jithendaraa Subramanian, Shivakanth Sujit, Niloy Irtisam, Umong Sain, Riashat Islam, Derek Nowrouzezahrai, Samira Ebrahimi Kahou,
- Abstract summary: We propose to use protein language models (PLMs) as a reward function to generate new sequences.
We perform extensive experiments on various sequence lengths to benchmark RL-based approaches.
We provide comprehensive evaluations along biological plausibility and diversity of the protein.
- Score: 14.477268882311991
- License:
- Abstract: Protein sequence design, determined by amino acid sequences, are essential to protein engineering problems in drug discovery. Prior approaches have resorted to evolutionary strategies or Monte-Carlo methods for protein design, but often fail to exploit the structure of the combinatorial search space, to generalize to unseen sequences. In the context of discrete black box optimization over large search spaces, learning a mutation policy to generate novel sequences with reinforcement learning is appealing. Recent advances in protein language models (PLMs) trained on large corpora of protein sequences offer a potential solution to this problem by scoring proteins according to their biological plausibility (such as the TM-score). In this work, we propose to use PLMs as a reward function to generate new sequences. Yet the PLM can be computationally expensive to query due to its large size. To this end, we propose an alternative paradigm where optimization can be performed on scores from a smaller proxy model that is periodically finetuned, jointly while learning the mutation policy. We perform extensive experiments on various sequence lengths to benchmark RL-based approaches, and provide comprehensive evaluations along biological plausibility and diversity of the protein. Our experimental results include favorable evaluations of the proposed sequences, along with high diversity scores, demonstrating that RL is a strong candidate for biological sequence design. Finally, we provide a modular open source implementation can be easily integrated in most RL training loops, with support for replacing the reward model with other PLMs, to spur further research in this domain. The code for all experiments is provided in the supplementary material.
Related papers
- Diffusion Language Models Are Versatile Protein Learners [75.98083311705182]
This paper introduces diffusion protein language model (DPLM), a versatile protein language model that demonstrates strong generative and predictive capabilities for protein sequences.
We first pre-train scalable DPLMs from evolutionary-scale protein sequences within a generative self-supervised discrete diffusion probabilistic framework.
After pre-training, DPLM exhibits the ability to generate structurally plausible, novel, and diverse protein sequences for unconditional generation.
arXiv Detail & Related papers (2024-02-28T18:57:56Z) - Tree Search-Based Evolutionary Bandits for Protein Sequence Optimization [44.356888079704156]
Protein engineering is a daunting task due to the vast sequence space of any given protein.
Protein engineering is typically conducted through an iterative process of adding mutations to the wild-type or lead sequences.
We propose a tree search-based bandit learning method, which expands a tree starting from the initial sequence with the guidance of a bandit machine learning model.
arXiv Detail & Related papers (2024-01-08T06:33:27Z) - Target-aware Variational Auto-encoders for Ligand Generation with
Multimodal Protein Representation Learning [2.01243755755303]
We introduce TargetVAE, a target-aware auto-encoder that generates with high binding affinities to arbitrary protein targets.
This is the first effort to unify different representations of proteins into a single model that we name as Protein Multimodal Network (PMN)
arXiv Detail & Related papers (2023-08-02T12:08:17Z) - Importance Weighted Expectation-Maximization for Protein Sequence Design [8.731580091353523]
We propose IsEM-Pro, an approach to generate protein sequences towards a given fitness criterion.
At its core, IsEM-Pro is a latent generative model, augmented by structure features from a separately learned Markov random fields (MRFs)
Experiments on eight protein sequence design tasks show that our IsEM-Pro outperforms the previous best methods by at least 55% on average fitness score.
arXiv Detail & Related papers (2023-04-30T04:56:36Z) - Designing Biological Sequences via Meta-Reinforcement Learning and
Bayesian Optimization [68.28697120944116]
We train an autoregressive generative model via Meta-Reinforcement Learning to propose promising sequences for selection.
We pose this problem as that of finding an optimal policy over a distribution of MDPs induced by sampling subsets of the data.
Our in-silico experiments show that meta-learning over such ensembles provides robustness against reward misspecification and achieves competitive results.
arXiv Detail & Related papers (2022-09-13T18:37:27Z) - Diversifying Design of Nucleic Acid Aptamers Using Unsupervised Machine
Learning [54.247560894146105]
Inverse design of short single-stranded RNA and DNA sequences (aptamers) is the task of finding sequences that satisfy a set of desired criteria.
We propose to use an unsupervised machine learning model known as the Potts model to discover new, useful sequences with controllable sequence diversity.
arXiv Detail & Related papers (2022-08-10T13:30:58Z) - ODBO: Bayesian Optimization with Search Space Prescreening for Directed Protein Evolution [18.726398852721204]
We propose an efficient, experimental design-oriented closed-loop optimization framework for protein directed evolution.
ODBO employs a combination of novel low-dimensional protein encoding strategy and Bayesian optimization enhanced with search space prescreening via outlier detection.
We conduct and report four protein directed evolution experiments that substantiate the capability of the proposed framework for finding variants with properties of interest.
arXiv Detail & Related papers (2022-05-19T13:21:31Z) - Improving RNA Secondary Structure Design using Deep Reinforcement
Learning [69.63971634605797]
We propose a new benchmark of applying reinforcement learning to RNA sequence design, in which the objective function is defined to be the free energy in the sequence's secondary structure.
We show results of the ablation analysis that we do for these algorithms, as well as graphs indicating the algorithm's performance across batches.
arXiv Detail & Related papers (2021-11-05T02:54:06Z) - EBM-Fold: Fully-Differentiable Protein Folding Powered by Energy-based
Models [53.17320541056843]
We propose a fully-differentiable approach for protein structure optimization, guided by a data-driven generative network.
Our EBM-Fold approach can efficiently produce high-quality decoys, compared against traditional Rosetta-based structure optimization routines.
arXiv Detail & Related papers (2021-05-11T03:40:29Z) - AdaLead: A simple and robust adaptive greedy search algorithm for
sequence design [55.41644538483948]
We develop an easy-to-directed, scalable, and robust evolutionary greedy algorithm (AdaLead)
AdaLead is a remarkably strong benchmark that out-competes more complex state of the art approaches in a variety of biologically motivated sequence design challenges.
arXiv Detail & Related papers (2020-10-05T16:40:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.