Investigating Decoder-only Large Language Models for Speech-to-text Translation
- URL: http://arxiv.org/abs/2407.03169v1
- Date: Wed, 3 Jul 2024 14:42:49 GMT
- Title: Investigating Decoder-only Large Language Models for Speech-to-text Translation
- Authors: Chao-Wei Huang, Hui Lu, Hongyu Gong, Hirofumi Inaguma, Ilia Kulikov, Ruslan Mavlyutov, Sravya Popuri,
- Abstract summary: Large language models (LLMs) are known for their exceptional reasoning capabilities, generalizability, and fluency across diverse domains.
We propose a decoder-only architecture that enables the LLM to directly consume the encoded speech representation and generate the text translation.
Our model achieves state-of-the-art performance on CoVoST 2 and FLEURS among models trained without proprietary data.
- Score: 39.17113782374464
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Large language models (LLMs), known for their exceptional reasoning capabilities, generalizability, and fluency across diverse domains, present a promising avenue for enhancing speech-related tasks. In this paper, we focus on integrating decoder-only LLMs to the task of speech-to-text translation (S2TT). We propose a decoder-only architecture that enables the LLM to directly consume the encoded speech representation and generate the text translation. Additionally, we investigate the effects of different parameter-efficient fine-tuning techniques and task formulation. Our model achieves state-of-the-art performance on CoVoST 2 and FLEURS among models trained without proprietary data. We also conduct analyses to validate the design choices of our proposed model and bring insights to the integration of LLMs to S2TT.
Related papers
- Developing Instruction-Following Speech Language Model Without Speech Instruction-Tuning Data [84.01401439030265]
Recent end-to-end speech language models (SLMs) have expanded upon the capabilities of large language models (LLMs)
We present a simple yet effective automatic process for creating speech-text pair data.
Our model demonstrates general capabilities for speech-related tasks without the need for speech instruction-tuning data.
arXiv Detail & Related papers (2024-09-30T07:01:21Z) - Boosting Code-Switching ASR with Mixture of Experts Enhanced Speech-Conditioned LLM [1.3089936156875277]
We introduce a speech-conditioned Large Language Model (LLM) integrated with a Mixture of Experts (MoE) based connector.
We propose an Insertion and Deletion of Interruption Token (IDIT) mechanism for better transfer text generation ability of LLM to speech recognition task.
We also present a connecter with MoE architecture that manages multiple languages efficiently.
arXiv Detail & Related papers (2024-09-24T09:20:22Z) - LLaST: Improved End-to-end Speech Translation System Leveraged by Large Language Models [38.60622303744585]
LLaST is a framework for building high-performance Large Language model based Speech-to-text Translation systems.
Our approach includes LLM-based speech translation architecture design, ASR-augmented training, multilingual data augmentation, and dual-LoRA optimization.
arXiv Detail & Related papers (2024-07-22T06:42:00Z) - Speech Translation with Large Language Models: An Industrial Practice [64.5419534101104]
We introduce LLM-ST, a novel and effective speech translation model constructed upon a pre-trained large language model (LLM)
By integrating the large language model (LLM) with a speech encoder and employing multi-task instruction tuning, LLM-ST can produce accurate timestamped transcriptions and translations.
Through rigorous experimentation on English and Chinese datasets, we showcase the exceptional performance of LLM-ST.
arXiv Detail & Related papers (2023-12-21T05:32:49Z) - On decoder-only architecture for speech-to-text and large language model
integration [59.49886892602309]
Speech-LLaMA is a novel approach that effectively incorporates acoustic information into text-based large language models.
We conduct experiments on multilingual speech-to-text translation tasks and demonstrate a significant improvement over strong baselines.
arXiv Detail & Related papers (2023-07-08T06:47:58Z) - VioLA: Unified Codec Language Models for Speech Recognition, Synthesis,
and Translation [91.39949385661379]
VioLA is a single auto-regressive Transformer decoder-only network that unifies various cross-modal tasks involving speech and text.
We first convert all the speech utterances to discrete tokens using an offline neural encoder.
We further integrate task IDs (TID) and language IDs (LID) into the proposed model to enhance the modeling capability of handling different languages and tasks.
arXiv Detail & Related papers (2023-05-25T14:39:47Z) - SPLAT: Speech-Language Joint Pre-Training for Spoken Language
Understanding [61.02342238771685]
Spoken language understanding requires a model to analyze input acoustic signal to understand its linguistic content and make predictions.
Various pre-training methods have been proposed to learn rich representations from large-scale unannotated speech and text.
We propose a novel semi-supervised learning framework, SPLAT, to jointly pre-train the speech and language modules.
arXiv Detail & Related papers (2020-10-05T19:29:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.