Motion meets Attention: Video Motion Prompts
- URL: http://arxiv.org/abs/2407.03179v2
- Date: Wed, 02 Oct 2024 13:32:56 GMT
- Title: Motion meets Attention: Video Motion Prompts
- Authors: Qixiang Chen, Lei Wang, Piotr Koniusz, Tom Gedeon,
- Abstract summary: We propose a modified Sigmoid function with learnable slope and shift parameters as an attention mechanism to modulate motion signals from frame differencing maps.
This approach generates a sequence of attention maps that enhance the processing of motion-related video content.
We show that our lightweight, plug-and-play motion prompt layer seamlessly integrates into models like SlowGym, X3D, and Timeformer.
- Score: 34.429192862783054
- License:
- Abstract: Videos contain rich spatio-temporal information. Traditional methods for extracting motion, used in tasks such as action recognition, often rely on visual contents rather than precise motion features. This phenomenon is referred to as 'blind motion extraction' behavior, which proves inefficient in capturing motions of interest due to a lack of motion-guided cues. Recently, attention mechanisms have enhanced many computer vision tasks by effectively highlighting salient visual areas. Inspired by this, we propose a modified Sigmoid function with learnable slope and shift parameters as an attention mechanism to modulate motion signals from frame differencing maps. This approach generates a sequence of attention maps that enhance the processing of motion-related video content. To ensure temporal continuity and smoothness of the attention maps, we apply pair-wise temporal attention variation regularization to remove unwanted motions (e.g., noise) while preserving important ones. We then perform Hadamard product between each pair of attention maps and the original video frames to highlight the evolving motions of interest over time. These highlighted motions, termed video motion prompts, are subsequently used as inputs to the model instead of the original video frames. We formalize this process as a motion prompt layer and incorporate the regularization term into the loss function to learn better motion prompts. This layer serves as an adapter between the model and the video data, bridging the gap between traditional 'blind motion extraction' and the extraction of relevant motions of interest. We show that our lightweight, plug-and-play motion prompt layer seamlessly integrates into models like SlowFast, X3D, and TimeSformer, enhancing performance on benchmarks such as FineGym and MPII Cooking 2.
Related papers
- Separate Motion from Appearance: Customizing Motion via Customizing Text-to-Video Diffusion Models [18.41701130228042]
Motion customization aims to adapt the diffusion model (DM) to generate videos with the motion specified by a set of video clips with the same motion concept.
This paper proposes two novel strategies to enhance motion-appearance separation, including temporal attention purification (TAP) and appearance highway (AH)
arXiv Detail & Related papers (2025-01-28T05:40:20Z) - Motion Prompting: Controlling Video Generation with Motion Trajectories [57.049252242807874]
We train a video generation model conditioned on sparse or dense video trajectories.
We translate high-level user requests into detailed, semi-dense motion prompts.
We demonstrate our approach through various applications, including camera and object motion control, "interacting" with an image, motion transfer, and image editing.
arXiv Detail & Related papers (2024-12-03T18:59:56Z) - Pay Attention and Move Better: Harnessing Attention for Interactive Motion Generation and Training-free Editing [23.70162749652725]
We develop a versatile set of simple yet effective motion editing methods via manipulating attention maps.
Our method enjoys good generation and editing ability with good explainability.
arXiv Detail & Related papers (2024-10-24T17:59:45Z) - Monkey See, Monkey Do: Harnessing Self-attention in Motion Diffusion for Zero-shot Motion Transfer [55.109778609058154]
Existing diffusion-based motion editing methods overlook the profound potential of the prior embedded within the weights of pre-trained models.
We uncover the roles and interactions of attention elements in capturing and representing motion patterns.
We integrate these elements to transfer a leader motion to a follower one while maintaining the nuanced characteristics of the follower, resulting in zero-shot motion transfer.
arXiv Detail & Related papers (2024-06-10T17:47:14Z) - MotionClone: Training-Free Motion Cloning for Controllable Video Generation [41.621147782128396]
MotionClone is a training-free framework that enables motion cloning from reference videos to versatile motion-controlled video generation.
MotionClone exhibits proficiency in both global camera motion and local object motion, with notable superiority in terms of motion fidelity, textual alignment, and temporal consistency.
arXiv Detail & Related papers (2024-06-08T03:44:25Z) - Spectral Motion Alignment for Video Motion Transfer using Diffusion Models [54.32923808964701]
Spectral Motion Alignment (SMA) is a framework that refines and aligns motion vectors using Fourier and wavelet transforms.
SMA learns motion patterns by incorporating frequency-domain regularization, facilitating the learning of whole-frame global motion dynamics.
Extensive experiments demonstrate SMA's efficacy in improving motion transfer while maintaining computational efficiency and compatibility across various video customization frameworks.
arXiv Detail & Related papers (2024-03-22T14:47:18Z) - MotionCrafter: One-Shot Motion Customization of Diffusion Models [66.44642854791807]
We introduce MotionCrafter, a one-shot instance-guided motion customization method.
MotionCrafter employs a parallel spatial-temporal architecture that injects the reference motion into the temporal component of the base model.
During training, a frozen base model provides appearance normalization, effectively separating appearance from motion.
arXiv Detail & Related papers (2023-12-08T16:31:04Z) - VMC: Video Motion Customization using Temporal Attention Adaption for
Text-to-Video Diffusion Models [58.93124686141781]
Video Motion Customization (VMC) is a novel one-shot tuning approach crafted to adapt temporal attention layers within video diffusion models.
Our approach introduces a novel motion distillation objective using residual vectors between consecutive frames as a motion reference.
We validate our method against state-of-the-art video generative models across diverse real-world motions and contexts.
arXiv Detail & Related papers (2023-12-01T06:50:11Z) - MotionZero:Exploiting Motion Priors for Zero-shot Text-to-Video
Generation [131.1446077627191]
Zero-shot Text-to-Video synthesis generates videos based on prompts without any videos.
We propose a prompt-adaptive and disentangled motion control strategy coined as MotionZero.
Our strategy could correctly control motion of different objects and support versatile applications including zero-shot video edit.
arXiv Detail & Related papers (2023-11-28T09:38:45Z) - Self-supervised Motion Learning from Static Images [36.85209332144106]
Motion from Static Images (MoSI) learns to encode motion information.
MoSI can discover regions with large motion even without fine-tuning on the downstream datasets.
We demonstrate that MoSI can discover regions with large motion even without fine-tuning on the downstream datasets.
arXiv Detail & Related papers (2021-04-01T03:55:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.