A Formal Model for Artificial Intelligence Applications in Automation Systems
- URL: http://arxiv.org/abs/2407.03183v1
- Date: Wed, 3 Jul 2024 15:05:32 GMT
- Title: A Formal Model for Artificial Intelligence Applications in Automation Systems
- Authors: Marvin Schieseck, Philip Topalis, Lasse Reinpold, Felix Gehlhoff, Alexander Fay,
- Abstract summary: This paper proposes a formal model using standards to provide clear and structured documentation of AI applications in automation systems.
The proposed information model for artificial intelligence in automation systems (AIAS) utilizes design patterns to map and link various aspects of automation systems and AI software.
- Score: 41.19948826527649
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The integration of Artificial Intelligence (AI) into automation systems has the potential to enhance efficiency and to address currently unsolved existing technical challenges. However, the industry-wide adoption of AI is hindered by the lack of standardized documentation for the complex compositions of automation systems, AI software, production hardware, and their interdependencies. This paper proposes a formal model using standards and ontologies to provide clear and structured documentation of AI applications in automation systems. The proposed information model for artificial intelligence in automation systems (AIAS) utilizes ontology design patterns to map and link various aspects of automation systems and AI software. Validated through a practical example, the model demonstrates its effectiveness in improving documentation practices and aiding the sustainable implementation of AI in industrial settings.
Related papers
- Next-Gen Software Engineering: AI-Assisted Big Models [0.0]
This paper aims to facilitate a synthesis between models and AI in software engineering.
The paper provides an overview of the current status of AI-assisted software engineering.
A vision of AI-assisted Big Models in SE is put forth, with the aim of capitalising on the advantages inherent to both approaches.
arXiv Detail & Related papers (2024-09-26T16:49:57Z) - Human-Centered Automation [0.3626013617212666]
The paper argues for the emerging area of Human-Centered Automation (HCA), which prioritizes user needs and preferences in the design and development of automation systems.
The paper discusses the limitations of existing automation approaches, the challenges in integrating AI and RPA, and the benefits of human-centered automation for productivity, innovation, and democratizing access to these technologies.
arXiv Detail & Related papers (2024-05-24T22:12:28Z) - Adaptation of XAI to Auto-tuning for Numerical Libraries [0.0]
Explainable AI (XAI) technology is gaining prominence, aiming to streamline AI model development and alleviate the burden of explaining AI outputs to users.
This research focuses on XAI for AI models when integrated into two different processes for practical numerical computations.
arXiv Detail & Related papers (2024-05-12T09:00:56Z) - Towards a general framework for improving the performance of classifiers using XAI methods [0.0]
This paper proposes a framework for automatically improving the performance of pre-trained Deep Learning (DL) classifiers using XAI methods.
We will call auto-encoder-based and encoder-decoder-based, and discuss their key aspects.
arXiv Detail & Related papers (2024-03-15T15:04:20Z) - Automated Process Planning Based on a Semantic Capability Model and SMT [50.76251195257306]
In research of manufacturing systems and autonomous robots, the term capability is used for a machine-interpretable specification of a system function.
We present an approach that combines these two topics: starting from a semantic capability model, an AI planning problem is automatically generated.
arXiv Detail & Related papers (2023-12-14T10:37:34Z) - A Graphical Modeling Language for Artificial Intelligence Applications
in Automation Systems [69.50862982117127]
An interdisciplinary graphical modeling language that enables the modeling of an AI application as an overall system comprehensible to all disciplines does not yet exist.
This paper presents a graphical modeling language that enables consistent and understandable modeling of AI applications in automation systems at system level.
arXiv Detail & Related papers (2023-06-20T12:06:41Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
We propose a novel approach to enable Model-Driven Software Engineering and Model-Driven AI Engineering.
In particular, we support Automated ML, thus assisting software engineers without deep AI knowledge in developing AI-intensive systems.
arXiv Detail & Related papers (2022-03-06T10:12:56Z) - Validate and Enable Machine Learning in Industrial AI [47.20869253934116]
Industrial AI promises more efficient future industrial control systems.
The Petuum Optimum system is used as an example to showcase the challenges in making and testing AI models.
arXiv Detail & Related papers (2020-10-30T20:33:05Z) - Towards an Interface Description Template for AI-enabled Systems [77.34726150561087]
Reuse is a common system architecture approach that seeks to instantiate a system architecture with existing components.
There is currently no framework that guides the selection of necessary information to assess their portability to operate in a system different than the one for which the component was originally purposed.
We present ongoing work on establishing an interface description template that captures the main information of an AI-enabled component.
arXiv Detail & Related papers (2020-07-13T20:30:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.