Multiple-Resolution Tokenization for Time Series Forecasting with an Application to Pricing
- URL: http://arxiv.org/abs/2407.03185v1
- Date: Wed, 3 Jul 2024 15:07:16 GMT
- Title: Multiple-Resolution Tokenization for Time Series Forecasting with an Application to Pricing
- Authors: Egon Peršak, Miguel F. Anjos, Sebastian Lautz, Aleksandar Kolev,
- Abstract summary: We propose a transformer architecture for time series forecasting with a focus on time series tokenisation.
Our architecture aims to learn effective representations at many scales across all available data simultaneously.
We present an application of this model to a real world prediction problem faced by the markdown team at a very large retailer.
- Score: 41.94295877935867
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose a transformer architecture for time series forecasting with a focus on time series tokenisation and apply it to a real-world prediction problem from the pricing domain. Our architecture aims to learn effective representations at many scales across all available data simultaneously. The model contains a number of novel modules: a differentiated form of time series patching which employs multiple resolutions, a multiple-resolution module for time-varying known variables, a mixer-based module for capturing cross-series information, and a novel output head with favourable scaling to account for the increased number of tokens. We present an application of this model to a real world prediction problem faced by the markdown team at a very large retailer. On the experiments conducted our model outperforms in-house models and the selected existing deep learning architectures.
Related papers
- Towards Long-Context Time Series Foundation Models [17.224575072056627]
Time series foundation models have shown impressive performance on a variety of tasks, across a wide range of domains, even in zero-shot settings.
This study bridges the gap by systematically comparing various context expansion techniques from both language and time series domains.
arXiv Detail & Related papers (2024-09-20T14:19:59Z) - Deep Time Series Models: A Comprehensive Survey and Benchmark [74.28364194333447]
Time series data is of great significance in real-world scenarios.
Recent years have witnessed remarkable breakthroughs in the time series community.
We release Time Series Library (TSLib) as a fair benchmark of deep time series models for diverse analysis tasks.
arXiv Detail & Related papers (2024-07-18T08:31:55Z) - NuwaTS: a Foundation Model Mending Every Incomplete Time Series [24.768755438620666]
We present textbfNuwaTS, a novel framework that repurposes Pre-trained Language Models for general time series imputation.
NuwaTS can be applied to impute missing data across any domain.
We show that NuwaTS generalizes to other time series tasks, such as forecasting.
arXiv Detail & Related papers (2024-05-24T07:59:02Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
We present a Masked-based Universal Time Series Forecasting Transformer (Moirai)
Moirai is trained on our newly introduced Large-scale Open Time Series Archive (LOTSA) featuring over 27B observations across nine domains.
Moirai achieves competitive or superior performance as a zero-shot forecaster when compared to full-shot models.
arXiv Detail & Related papers (2024-02-04T20:00:45Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - Merlion: A Machine Learning Library for Time Series [73.46386700728577]
Merlion is an open-source machine learning library for time series.
It features a unified interface for models and datasets for anomaly detection and forecasting.
Merlion also provides a unique evaluation framework that simulates the live deployment and re-training of a model in production.
arXiv Detail & Related papers (2021-09-20T02:03:43Z) - Instance-wise Graph-based Framework for Multivariate Time Series
Forecasting [69.38716332931986]
We propose a simple yet efficient instance-wise graph-based framework to utilize the inter-dependencies of different variables at different time stamps.
The key idea of our framework is aggregating information from the historical time series of different variables to the current time series that we need to forecast.
arXiv Detail & Related papers (2021-09-14T07:38:35Z) - Time Series Forecasting With Deep Learning: A Survey [5.351996099005896]
We survey common encoder and decoder designs used in both one-step-ahead and multi-horizon time series forecasting.
We highlight recent developments in hybrid deep learning models, which combine well-studied statistical models with neural network components.
arXiv Detail & Related papers (2020-04-28T10:32:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.