Expressive Gaussian Human Avatars from Monocular RGB Video
- URL: http://arxiv.org/abs/2407.03204v1
- Date: Wed, 3 Jul 2024 15:36:27 GMT
- Title: Expressive Gaussian Human Avatars from Monocular RGB Video
- Authors: Hezhen Hu, Zhiwen Fan, Tianhao Wu, Yihan Xi, Seoyoung Lee, Georgios Pavlakos, Zhangyang Wang,
- Abstract summary: We introduce EVA, a drivable human model that meticulously sculpts fine details based on 3D Gaussians and SMPL-X.
We highlight the critical importance of aligning the SMPL-X model with RGB frames for effective avatar learning.
We propose a context-aware adaptive density control strategy, which is adaptively adjusting the gradient thresholds.
- Score: 69.56388194249942
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nuanced expressiveness, particularly through fine-grained hand and facial expressions, is pivotal for enhancing the realism and vitality of digital human representations. In this work, we focus on investigating the expressiveness of human avatars when learned from monocular RGB video; a setting that introduces new challenges in capturing and animating fine-grained details. To this end, we introduce EVA, a drivable human model that meticulously sculpts fine details based on 3D Gaussians and SMPL-X, an expressive parametric human model. Focused on enhancing expressiveness, our work makes three key contributions. First, we highlight the critical importance of aligning the SMPL-X model with RGB frames for effective avatar learning. Recognizing the limitations of current SMPL-X prediction methods for in-the-wild videos, we introduce a plug-and-play module that significantly ameliorates misalignment issues. Second, we propose a context-aware adaptive density control strategy, which is adaptively adjusting the gradient thresholds to accommodate the varied granularity across body parts. Last but not least, we develop a feedback mechanism that predicts per-pixel confidence to better guide the learning of 3D Gaussians. Extensive experiments on two benchmarks demonstrate the superiority of our framework both quantitatively and qualitatively, especially on the fine-grained hand and facial details. See the project website at \url{https://evahuman.github.io}
Related papers
- Generalizable and Animatable Gaussian Head Avatar [50.34788590904843]
We propose Generalizable and Animatable Gaussian head Avatar (GAGAvatar) for one-shot animatable head avatar reconstruction.
We generate the parameters of 3D Gaussians from a single image in a single forward pass.
Our method exhibits superior performance compared to previous methods in terms of reconstruction quality and expression accuracy.
arXiv Detail & Related papers (2024-10-10T14:29:00Z) - NPGA: Neural Parametric Gaussian Avatars [46.52887358194364]
We propose a data-driven approach to create high-fidelity controllable avatars from multi-view video recordings.
We build our method around 3D Gaussian splatting for its highly efficient rendering and to inherit the topological flexibility of point clouds.
We evaluate our method on the public NeRSemble dataset, demonstrating that NPGA significantly outperforms the previous state-of-the-art avatars on the self-reenactment task by 2.6 PSNR.
arXiv Detail & Related papers (2024-05-29T17:58:09Z) - UV Gaussians: Joint Learning of Mesh Deformation and Gaussian Textures for Human Avatar Modeling [71.87807614875497]
We propose UV Gaussians, which models the 3D human body by jointly learning mesh deformations and 2D UV-space Gaussian textures.
We collect and process a new dataset of human motion, which includes multi-view images, scanned models, parametric model registration, and corresponding texture maps. Experimental results demonstrate that our method achieves state-of-the-art synthesis of novel view and novel pose.
arXiv Detail & Related papers (2024-03-18T09:03:56Z) - GVA: Reconstructing Vivid 3D Gaussian Avatars from Monocular Videos [56.40776739573832]
We present a novel method that facilitates the creation of vivid 3D Gaussian avatars from monocular video inputs (GVA)
Our innovation lies in addressing the intricate challenges of delivering high-fidelity human body reconstructions.
We introduce a pose refinement technique to improve hand and foot pose accuracy by aligning normal maps and silhouettes.
arXiv Detail & Related papers (2024-02-26T14:40:15Z) - Deformable 3D Gaussian Splatting for Animatable Human Avatars [50.61374254699761]
We propose a fully explicit approach to construct a digital avatar from as little as a single monocular sequence.
ParDy-Human constitutes an explicit model for realistic dynamic human avatars which requires significantly fewer training views and images.
Our avatars learning is free of additional annotations such as Splat masks and can be trained with variable backgrounds while inferring full-resolution images efficiently even on consumer hardware.
arXiv Detail & Related papers (2023-12-22T20:56:46Z) - Learning Personalized High Quality Volumetric Head Avatars from
Monocular RGB Videos [47.94545609011594]
We propose a method to learn a high-quality implicit 3D head avatar from a monocular RGB video captured in the wild.
Our hybrid pipeline combines the geometry prior and dynamic tracking of a 3DMM with a neural radiance field to achieve fine-grained control and photorealism.
arXiv Detail & Related papers (2023-04-04T01:10:04Z) - X-Avatar: Expressive Human Avatars [33.24502928725897]
We present X-Avatar, a novel avatar model that captures the full expressiveness of digital humans to bring about life-like experiences in telepresence, AR/VR and beyond.
Our method models bodies, hands, facial expressions and appearance in a holistic fashion and can be learned from either full 3D scans or RGB-D data.
arXiv Detail & Related papers (2023-03-08T18:59:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.