Learning Disentangled Representation in Object-Centric Models for Visual Dynamics Prediction via Transformers
- URL: http://arxiv.org/abs/2407.03216v1
- Date: Wed, 3 Jul 2024 15:43:54 GMT
- Title: Learning Disentangled Representation in Object-Centric Models for Visual Dynamics Prediction via Transformers
- Authors: Sanket Gandhi, Atul, Samanyu Mahajan, Vishal Sharma, Rushil Gupta, Arnab Kumar Mondal, Parag Singla,
- Abstract summary: Recent work has shown that object-centric representations can greatly help improve the accuracy of learning dynamics.
Can learning disentangled representation further improve the accuracy of visual dynamics prediction in object-centric models?
We try to learn such disentangled representations for the case of static images citepnsb, without making any specific assumptions about the kind of attributes that an object might have.
- Score: 11.155818952879146
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent work has shown that object-centric representations can greatly help improve the accuracy of learning dynamics while also bringing interpretability. In this work, we take this idea one step further, ask the following question: "can learning disentangled representation further improve the accuracy of visual dynamics prediction in object-centric models?" While there has been some attempt to learn such disentangled representations for the case of static images \citep{nsb}, to the best of our knowledge, ours is the first work which tries to do this in a general setting for video, without making any specific assumptions about the kind of attributes that an object might have. The key building block of our architecture is the notion of a {\em block}, where several blocks together constitute an object. Each block is represented as a linear combination of a given number of learnable concept vectors, which is iteratively refined during the learning process. The blocks in our model are discovered in an unsupervised manner, by attending over object masks, in a style similar to discovery of slots \citep{slot_attention}, for learning a dense object-centric representation. We employ self-attention via transformers over the discovered blocks to predict the next state resulting in discovery of visual dynamics. We perform a series of experiments on several benchmark 2-D, and 3-D datasets demonstrating that our architecture (1) can discover semantically meaningful blocks (2) help improve accuracy of dynamics prediction compared to SOTA object-centric models (3) perform significantly better in OOD setting where the specific attribute combinations are not seen earlier during training. Our experiments highlight the importance discovery of disentangled representation for visual dynamics prediction.
Related papers
- Explicitly Disentangled Representations in Object-Centric Learning [0.0]
We propose a novel architecture that biases object-centric models toward disentangling shape and texture components.
In particular, we propose a novel architecture that biases object-centric models toward disentangling shape and texture components.
arXiv Detail & Related papers (2024-01-18T17:22:11Z) - Object-centric architectures enable efficient causal representation
learning [51.6196391784561]
We show that when the observations are of multiple objects, the generative function is no longer injective and disentanglement fails in practice.
We develop an object-centric architecture that leverages weak supervision from sparse perturbations to disentangle each object's properties.
This approach is more data-efficient in the sense that it requires significantly fewer perturbations than a comparable approach that encodes to a Euclidean space.
arXiv Detail & Related papers (2023-10-29T16:01:03Z) - Robust and Controllable Object-Centric Learning through Energy-based
Models [95.68748828339059]
ours is a conceptually simple and general approach to learning object-centric representations through an energy-based model.
We show that ours can be easily integrated into existing architectures and can effectively extract high-quality object-centric representations.
arXiv Detail & Related papers (2022-10-11T15:11:15Z) - SSMTL++: Revisiting Self-Supervised Multi-Task Learning for Video
Anomaly Detection [108.57862846523858]
We revisit the self-supervised multi-task learning framework, proposing several updates to the original method.
We modernize the 3D convolutional backbone by introducing multi-head self-attention modules.
In our attempt to further improve the model, we study additional self-supervised learning tasks, such as predicting segmentation maps.
arXiv Detail & Related papers (2022-07-16T19:25:41Z) - Learning Multi-Object Dynamics with Compositional Neural Radiance Fields [63.424469458529906]
We present a method to learn compositional predictive models from image observations based on implicit object encoders, Neural Radiance Fields (NeRFs), and graph neural networks.
NeRFs have become a popular choice for representing scenes due to their strong 3D prior.
For planning, we utilize RRTs in the learned latent space, where we can exploit our model and the implicit object encoder to make sampling the latent space informative and more efficient.
arXiv Detail & Related papers (2022-02-24T01:31:29Z) - Sim2Real Object-Centric Keypoint Detection and Description [40.58367357980036]
Keypoint detection and description play a central role in computer vision.
We propose the object-centric formulation, which requires further identifying which object each interest point belongs to.
We develop a sim2real contrastive learning mechanism that can generalize the model trained in simulation to real-world applications.
arXiv Detail & Related papers (2022-02-01T15:00:20Z) - Towards an Interpretable Latent Space in Structured Models for Video
Prediction [30.080907495461876]
We focus on the task of future frame prediction in video governed by underlying physical dynamics.
We work with models which are object-centric, i.e., explicitly work with object representations, and propagate a loss in the latent space.
arXiv Detail & Related papers (2021-07-16T05:37:16Z) - Generalization and Robustness Implications in Object-Centric Learning [23.021791024676986]
In this paper, we train state-of-the-art unsupervised models on five common multi-object datasets.
From our experimental study, we find object-centric representations to be generally useful for downstream tasks.
arXiv Detail & Related papers (2021-07-01T17:51:11Z) - Self-Supervision by Prediction for Object Discovery in Videos [62.87145010885044]
In this paper, we use the prediction task as self-supervision and build a novel object-centric model for image sequence representation.
Our framework can be trained without the help of any manual annotation or pretrained network.
Initial experiments confirm that the proposed pipeline is a promising step towards object-centric video prediction.
arXiv Detail & Related papers (2021-03-09T19:14:33Z) - Occlusion resistant learning of intuitive physics from videos [52.25308231683798]
Key ability for artificial systems is to understand physical interactions between objects, and predict future outcomes of a situation.
This ability, often referred to as intuitive physics, has recently received attention and several methods were proposed to learn these physical rules from video sequences.
arXiv Detail & Related papers (2020-04-30T19:35:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.