Single Character Perturbations Break LLM Alignment
- URL: http://arxiv.org/abs/2407.03232v1
- Date: Wed, 3 Jul 2024 16:03:10 GMT
- Title: Single Character Perturbations Break LLM Alignment
- Authors: Leon Lin, Hannah Brown, Kenji Kawaguchi, Michael Shieh,
- Abstract summary: We show that it is possible to break model defenses simply by appending a space to the end of a model's input.
We examine the causes of this behavior, finding that the contexts in which single spaces occur in tokenized training data encourage models to generate lists when prompted.
Our findings underscore the fragile state of current model alignment and promote the importance of developing more robust alignment methods.
- Score: 20.79833694266861
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When LLMs are deployed in sensitive, human-facing settings, it is crucial that they do not output unsafe, biased, or privacy-violating outputs. For this reason, models are both trained and instructed to refuse to answer unsafe prompts such as "Tell me how to build a bomb." We find that, despite these safeguards, it is possible to break model defenses simply by appending a space to the end of a model's input. In a study of eight open-source models, we demonstrate that this acts as a strong enough attack to cause the majority of models to generate harmful outputs with very high success rates. We examine the causes of this behavior, finding that the contexts in which single spaces occur in tokenized training data encourage models to generate lists when prompted, overriding training signals to refuse to answer unsafe requests. Our findings underscore the fragile state of current model alignment and promote the importance of developing more robust alignment methods. Code and data will be available at https://github.com/hannah-aught/space_attack.
Related papers
- DROJ: A Prompt-Driven Attack against Large Language Models [0.0]
Large Language Models (LLMs) have demonstrated exceptional capabilities across various natural language processing tasks.
Despite massive alignment efforts, LLMs remain susceptible to adversarial jailbreak attacks.
We introduce a novel approach, Directed Rrepresentation Optimization Jailbreak (DROJ)
arXiv Detail & Related papers (2024-11-14T01:48:08Z) - What Makes and Breaks Safety Fine-tuning? A Mechanistic Study [64.9691741899956]
Safety fine-tuning helps align Large Language Models (LLMs) with human preferences for their safe deployment.
We design a synthetic data generation framework that captures salient aspects of an unsafe input.
Using this, we investigate three well-known safety fine-tuning methods.
arXiv Detail & Related papers (2024-07-14T16:12:57Z) - Refuse Whenever You Feel Unsafe: Improving Safety in LLMs via Decoupled Refusal Training [67.30423823744506]
This study addresses a critical gap in safety tuning practices for Large Language Models (LLMs)
We introduce a novel approach, Decoupled Refusal Training (DeRTa), designed to empower LLMs to refuse compliance to harmful prompts at any response position.
DeRTa incorporates two novel components: (1) Maximum Likelihood Estimation with Harmful Response Prefix, which trains models to recognize and avoid unsafe content by appending a segment of harmful response to the beginning of a safe response, and (2) Reinforced Transition Optimization (RTO), which equips models with the ability to transition from potential harm to safety refusal consistently throughout the harmful
arXiv Detail & Related papers (2024-07-12T09:36:33Z) - Emulated Disalignment: Safety Alignment for Large Language Models May Backfire! [65.06450319194454]
Large language models (LLMs) undergo safety alignment to ensure safe conversations with humans.
This paper introduces a training-free attack method capable of reversing safety alignment.
We name this method emulated disalignment (ED) because sampling from this contrastive distribution provably emulates the result of fine-tuning to minimize a safety reward.
arXiv Detail & Related papers (2024-02-19T18:16:51Z) - Navigating the OverKill in Large Language Models [84.62340510027042]
We investigate the factors for overkill by exploring how models handle and determine the safety of queries.
Our findings reveal the presence of shortcuts within models, leading to an over-attention of harmful words like 'kill' and prompts emphasizing safety will exacerbate overkill.
We introduce Self-Contrastive Decoding (Self-CD), a training-free and model-agnostic strategy, to alleviate this phenomenon.
arXiv Detail & Related papers (2024-01-31T07:26:47Z) - Language Model Unalignment: Parametric Red-Teaming to Expose Hidden
Harms and Biases [32.2246459413988]
Red-teaming aims to jailbreak a model's safety behavior to make it act as a helpful agent disregarding the harmfulness of the query.
We present a new perspective on safety research i.e., red-teaming through Unalignment.
Unalignment tunes the model parameters to break model guardrails that are not deeply rooted in the model's behavior.
arXiv Detail & Related papers (2023-10-22T13:55:46Z) - Shadow Alignment: The Ease of Subverting Safely-Aligned Language Models [102.63973600144308]
Open-source large language models can be easily subverted to generate harmful content.
Experiments across 8 models released by 5 different organizations demonstrate the effectiveness of shadow alignment attack.
This study serves as a clarion call for a collective effort to overhaul and fortify the safety of open-source LLMs against malicious attackers.
arXiv Detail & Related papers (2023-10-04T16:39:31Z) - Are aligned neural networks adversarially aligned? [93.91072860401856]
adversarial users can construct inputs which circumvent attempts at alignment.
We show that existing NLP-based optimization attacks are insufficiently powerful to reliably attack aligned text models.
We conjecture that improved NLP attacks may demonstrate this same level of adversarial control over text-only models.
arXiv Detail & Related papers (2023-06-26T17:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.