Anole: Adapting Diverse Compressed Models For Cross-Scene Prediction On Mobile Devices
- URL: http://arxiv.org/abs/2407.03331v1
- Date: Thu, 9 May 2024 12:06:18 GMT
- Title: Anole: Adapting Diverse Compressed Models For Cross-Scene Prediction On Mobile Devices
- Authors: Yunzhe Li, Hongzi Zhu, Zhuohong Deng, Yunlong Cheng, Liang Zhang, Shan Chang, Minyi Guo,
- Abstract summary: Anole is a light-weight scheme to cope with the local DNN model inference on mobile devices.
We implement Anole on different types of mobile devices and conduct extensive trace-driven and real-world experiments based on unmanned aerial vehicles (UAVs)
- Score: 17.542012577533015
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Emerging Artificial Intelligence of Things (AIoT) applications desire online prediction using deep neural network (DNN) models on mobile devices. However, due to the movement of devices, unfamiliar test samples constantly appear, significantly affecting the prediction accuracy of a pre-trained DNN. In addition, unstable network connection calls for local model inference. In this paper, we propose a light-weight scheme, called Anole, to cope with the local DNN model inference on mobile devices. The core idea of Anole is to first establish an army of compact DNN models, and then adaptively select the model fitting the current test sample best for online inference. The key is to automatically identify model-friendly scenes for training scene-specific DNN models. To this end, we design a weakly-supervised scene representation learning algorithm by combining both human heuristics and feature similarity in separating scenes. Moreover, we further train a model classifier to predict the best-fit scene-specific DNN model for each test sample. We implement Anole on different types of mobile devices and conduct extensive trace-driven and real-world experiments based on unmanned aerial vehicles (UAVs). The results demonstrate that Anole outwits the method of using a versatile large DNN in terms of prediction accuracy (4.5% higher), response time (33.1% faster) and power consumption (45.1% lower).
Related papers
- Inferring Data Preconditions from Deep Learning Models for Trustworthy
Prediction in Deployment [25.527665632625627]
It is important to reason about the trustworthiness of the model's predictions with unseen data during deployment.
Existing methods for specifying and verifying traditional software are insufficient for this task.
We propose a novel technique that uses rules derived from neural network computations to infer data preconditions.
arXiv Detail & Related papers (2024-01-26T03:47:18Z) - CDMPP: A Device-Model Agnostic Framework for Latency Prediction of
Tensor Programs [11.025071880642974]
Deep Neural Networks (DNNs) have shown excellent performance in a wide range of machine learning applications.
Knowing the latency of running a DNN model or tensor program on a specific device is useful in various tasks.
We propose CDMPP, an efficient tensor program latency prediction framework for both cross-model and cross-device prediction.
arXiv Detail & Related papers (2023-11-16T09:05:52Z) - Bridging Precision and Confidence: A Train-Time Loss for Calibrating
Object Detection [58.789823426981044]
We propose a novel auxiliary loss formulation that aims to align the class confidence of bounding boxes with the accurateness of predictions.
Our results reveal that our train-time loss surpasses strong calibration baselines in reducing calibration error for both in and out-domain scenarios.
arXiv Detail & Related papers (2023-03-25T08:56:21Z) - PerfSAGE: Generalized Inference Performance Predictor for Arbitrary Deep
Learning Models on Edge Devices [8.272409756443539]
This paper describes PerfSAGE, a novel graph neural network (GNN) that predicts inference latency, energy, and memory footprint on an arbitrary DNNlite graph.
Using this dataset, we train PerfSAGE and provide experimental results that demonstrate state-of-the-art prediction accuracy with a Mean Absolute Percentage Error of 5% across all targets and model search spaces.
arXiv Detail & Related papers (2023-01-26T08:59:15Z) - Boosted Dynamic Neural Networks [53.559833501288146]
A typical EDNN has multiple prediction heads at different layers of the network backbone.
To optimize the model, these prediction heads together with the network backbone are trained on every batch of training data.
Treating training and testing inputs differently at the two phases will cause the mismatch between training and testing data distributions.
We formulate an EDNN as an additive model inspired by gradient boosting, and propose multiple training techniques to optimize the model effectively.
arXiv Detail & Related papers (2022-11-30T04:23:12Z) - Omni-sparsity DNN: Fast Sparsity Optimization for On-Device Streaming
E2E ASR via Supernet [24.62661549442265]
We propose Omni-sparsity DNN, where a single neural network can be pruned to generate optimized model for a large range of model sizes.
Our results show great saving on training time and resources with similar or better accuracy on LibriSpeech compared to individually pruned models.
arXiv Detail & Related papers (2021-10-15T20:28:27Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
We introduce a novel technique, DAAIN, to detect out-of-distribution (OOD) inputs and adversarial attacks (AA)
Our approach monitors the inner workings of a neural network and learns a density estimator of the activation distribution.
Our model can be trained on a single GPU making it compute efficient and deployable without requiring specialized accelerators.
arXiv Detail & Related papers (2021-05-30T22:07:13Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
We propose a time estimation framework to decouple the architectural search from the target hardware.
The proposed methodology extracts a set of models from micro- kernel and multi-layer benchmarks and generates a stacked model for mapping and network execution time estimation.
We compare estimation accuracy and fidelity of the generated mixed models, statistical models with the roofline model, and a refined roofline model for evaluation.
arXiv Detail & Related papers (2021-05-07T11:39:05Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoT devices can hardly afford complex deep neural networks (DNN) models, and offloading anomaly detection tasks to the cloud incurs long delay.
We propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems.
We show that our proposed approach significantly reduces detection delay without sacrificing accuracy, as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-04-15T06:13:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.