Continuous Optimization for Offline Change Point Detection and Estimation
- URL: http://arxiv.org/abs/2407.03383v1
- Date: Wed, 3 Jul 2024 01:19:59 GMT
- Title: Continuous Optimization for Offline Change Point Detection and Estimation
- Authors: Hans Reimann, Sarat Moka, Georgy Sofronov,
- Abstract summary: It exploits reformulating the normal mean multiple change point model into a regularized statistical inverse problem enforcing sparsity.
The recently developed framework of continuous optimization for best subset selection (COMBSS) is briefly introduced and related to the problem at hand.
Supervised and unsupervised perspectives are explored with the latter testing different approaches for the choice of regularization penalty parameters.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work explores use of novel advances in best subset selection for regression modelling via continuous optimization for offline change point detection and estimation in univariate Gaussian data sequences. The approach exploits reformulating the normal mean multiple change point model into a regularized statistical inverse problem enforcing sparsity. After introducing the problem statement, criteria and previous investigations via Lasso-regularization, the recently developed framework of continuous optimization for best subset selection (COMBSS) is briefly introduced and related to the problem at hand. Supervised and unsupervised perspectives are explored with the latter testing different approaches for the choice of regularization penalty parameters via the discrepancy principle and a confidence bound. The main result is an adaptation and evaluation of the COMBSS approach for offline normal mean multiple change-point detection via experimental results on simulated data for different choices of regularisation parameters. Results and future directions are discussed.
Related papers
- Optimal Baseline Corrections for Off-Policy Contextual Bandits [61.740094604552475]
We aim to learn decision policies that optimize an unbiased offline estimate of an online reward metric.
We propose a single framework built on their equivalence in learning scenarios.
Our framework enables us to characterize the variance-optimal unbiased estimator and provide a closed-form solution for it.
arXiv Detail & Related papers (2024-05-09T12:52:22Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
We consider the problem of quantifying uncertainty over expected cumulative rewards in model-based reinforcement learning.
We propose a new uncertainty Bellman equation (UBE) whose solution converges to the true posterior variance over values.
We introduce a general-purpose policy optimization algorithm, Q-Uncertainty Soft Actor-Critic (QU-SAC) that can be applied for either risk-seeking or risk-averse policy optimization.
arXiv Detail & Related papers (2023-12-07T15:55:58Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
We revisit the likelihood-based inference principle and propose to use likelihood ratios to construct valid confidence sequences.
Our method is especially suitable for problems with well-specified likelihoods.
We show how to provably choose the best sequence of estimators and shed light on connections to online convex optimization.
arXiv Detail & Related papers (2023-11-08T00:10:21Z) - On Pitfalls of Test-Time Adaptation [82.8392232222119]
Test-Time Adaptation (TTA) has emerged as a promising approach for tackling the robustness challenge under distribution shifts.
We present TTAB, a test-time adaptation benchmark that encompasses ten state-of-the-art algorithms, a diverse array of distribution shifts, and two evaluation protocols.
arXiv Detail & Related papers (2023-06-06T09:35:29Z) - Online Statistical Inference for Contextual Bandits via Stochastic
Gradient Descent [10.108468796986074]
We study the online statistical inference of model parameters in a contextual bandit framework of decision-making.
We propose a general framework for online and adaptive data collection environment that can update decision rules via weighted gradient descent.
arXiv Detail & Related papers (2022-12-30T18:57:08Z) - A Contrastive Approach to Online Change Point Detection [4.762323642506733]
We suggest a novel procedure for online change point detection.
Our approach expands an idea of maximizing a discrepancy measure between points from pre-change and post-change distributions.
We prove non-asymptotic bounds on the average running length of the procedure and its expected detection delay.
arXiv Detail & Related papers (2022-06-21T07:01:36Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
Even simple methods like least squares can exhibit non-normal behavior when data is collected in an adaptive manner.
We propose a family of online debiasing estimators to correct these distributional anomalies in at least squares estimation.
We demonstrate the usefulness of our theory via applications to multi-armed bandit, autoregressive time series estimation, and active learning with exploration.
arXiv Detail & Related papers (2021-07-05T21:05:11Z) - Benign Overfitting of Constant-Stepsize SGD for Linear Regression [122.70478935214128]
inductive biases are central in preventing overfitting empirically.
This work considers this issue in arguably the most basic setting: constant-stepsize SGD for linear regression.
We reflect on a number of notable differences between the algorithmic regularization afforded by (unregularized) SGD in comparison to ordinary least squares.
arXiv Detail & Related papers (2021-03-23T17:15:53Z) - Variational Nonlinear System Identification [0.8793721044482611]
This paper considers parameter estimation for nonlinear state-space models, which is an important but challenging problem.
We employ a variational inference (VI) approach, which is a principled method that has deep connections to maximum likelihood estimation.
This VI approach ultimately provides estimates of the model as solutions to an optimisation problem, which is deterministic, tractable and can be solved using standard optimisation tools.
arXiv Detail & Related papers (2020-12-08T05:43:50Z) - Variable selection for Gaussian process regression through a sparse
projection [0.802904964931021]
This paper presents a new variable selection approach integrated with Gaussian process (GP) regression.
The choice of tuning parameters and the accuracy of the estimation are evaluated with the simulation some chosen benchmark approaches.
arXiv Detail & Related papers (2020-08-25T01:06:10Z) - Online detection of local abrupt changes in high-dimensional Gaussian
graphical models [13.554038901140949]
The problem of identifying change points in high-dimensional Gaussian graphical models (GGMs) in an online fashion is of interest, due to new applications in biology, economics and social sciences.
We develop a novel test to address this problem that is based on the $ell_infty$ norm of the normalized covariance matrix of an appropriately selected portion of incoming data.
arXiv Detail & Related papers (2020-03-16T00:41:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.