Towards Asimov's Psychohistory: Harnessing Topological Data Analysis, Artificial Intelligence and Social Media data to Forecast Societal Trends
- URL: http://arxiv.org/abs/2407.03446v1
- Date: Wed, 3 Jul 2024 18:44:36 GMT
- Title: Towards Asimov's Psychohistory: Harnessing Topological Data Analysis, Artificial Intelligence and Social Media data to Forecast Societal Trends
- Authors: Isabela Rocha,
- Abstract summary: In the age of big data and advanced computational methods, the prediction of large-scale social behaviors is becoming increasingly feasible.
This paper consists of a theoretical exploration of the integration of computational power and mathematical frameworks.
I argue that these tools provide unprecedented clarity into the dynamics of large communities.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the age of big data and advanced computational methods, the prediction of large-scale social behaviors, reminiscent of Isaac Asimov's fictional science of Psychohistory, is becoming increasingly feasible. This paper consists of a theoretical exploration of the integration of computational power and mathematical frameworks, particularly through Topological Data Analysis (TDA) (Carlsson, Vejdemo-Johansson, 2022) and Artificial Intelligence (AI), to forecast societal trends through social media data analysis. By examining social media as a reflective surface of collective human behavior through the systematic behaviorist approach (Glenn, et al., 2016), I argue that these tools provide unprecedented clarity into the dynamics of large communities. This study dialogues with Asimov's work, drawing parallels between his visionary concepts and contemporary methodologies, illustrating how modern computational techniques can uncover patterns and predict shifts in social behavior, contributing to the emerging field of digital sociology -- or even, Psychohistory itself.
Related papers
- AI and Social Theory [0.0]
We sketch a programme for AI driven social theory, starting by defining what we mean by artificial intelligence (AI)
We then lay out our model for how AI based models can draw on the growing availability of digital data to help test the validity of different social theories based on their predictive power.
arXiv Detail & Related papers (2024-07-07T12:26:16Z) - Advancing Social Intelligence in AI Agents: Technical Challenges and Open Questions [67.60397632819202]
Building socially-intelligent AI agents (Social-AI) is a multidisciplinary, multimodal research goal.
We identify a set of underlying technical challenges and open questions for researchers across computing communities to advance Social-AI.
arXiv Detail & Related papers (2024-04-17T02:57:42Z) - Social Intelligence Data Infrastructure: Structuring the Present and Navigating the Future [59.78608958395464]
We build a Social AI Data Infrastructure, which consists of a comprehensive social AI taxonomy and a data library of 480 NLP datasets.
Our infrastructure allows us to analyze existing dataset efforts, and also evaluate language models' performance in different social intelligence aspects.
We show there is a need for multifaceted datasets, increased diversity in language and culture, more long-tailed social situations, and more interactive data in future social intelligence data efforts.
arXiv Detail & Related papers (2024-02-28T00:22:42Z) - Machine Psychology [54.287802134327485]
We argue that a fruitful direction for research is engaging large language models in behavioral experiments inspired by psychology.
We highlight theoretical perspectives, experimental paradigms, and computational analysis techniques that this approach brings to the table.
It paves the way for a "machine psychology" for generative artificial intelligence (AI) that goes beyond performance benchmarks.
arXiv Detail & Related papers (2023-03-24T13:24:41Z) - Predicting Opinion Dynamics via Sociologically-Informed Neural Networks [31.77040611129394]
We present Sociologically-Informed Neural Network (SINN), which integrates theoretical models and social media data.
In particular, we recast theoretical models as ordinary differential equations (ODEs)
We train a neural network that simultaneously approximates the data and conforms to the ODEs that represent the social scientific knowledge.
arXiv Detail & Related papers (2022-07-07T05:55:47Z) - The world seems different in a social context: a neural network analysis
of human experimental data [57.729312306803955]
We show that it is possible to replicate human behavioral data in both individual and social task settings by modifying the precision of prior and sensory signals.
An analysis of the neural activation traces of the trained networks provides evidence that information is coded in fundamentally different ways in the network in the individual and in the social conditions.
arXiv Detail & Related papers (2022-03-03T17:19:12Z) - Social Neuro AI: Social Interaction as the "dark matter" of AI [0.0]
We argue that empirical results from social psychology and social neuroscience along with the framework of dynamics can be of inspiration to the development of more intelligent artificial agents.
arXiv Detail & Related papers (2021-12-31T13:41:53Z) - PHASE: PHysically-grounded Abstract Social Events for Machine Social
Perception [50.551003004553806]
We create a dataset of physically-grounded abstract social events, PHASE, that resemble a wide range of real-life social interactions.
Phase is validated with human experiments demonstrating that humans perceive rich interactions in the social events.
As a baseline model, we introduce a Bayesian inverse planning approach, SIMPLE, which outperforms state-of-the-art feed-forward neural networks.
arXiv Detail & Related papers (2021-03-02T18:44:57Z) - Recursive Social Behavior Graph for Trajectory Prediction [49.005219590582676]
We formulate social representations supervised by group-based annotations into a social behavior graph, called Recursive Social Behavior Graph.
With the guidance of Recursive Social Behavior Graph, we surpass state-of-the-art method on ETH and UCY dataset for 11.1% in ADE and 10.8% in FDE.
arXiv Detail & Related papers (2020-04-22T06:01:48Z) - Theory In, Theory Out: The uses of social theory in machine learning for
social science [3.180013942295509]
We show how social theory can be used to answer the basic methodological and interpretive questions that arise at each stage of the machine learning pipeline.
We believe this paper can act as a guide for computer and social scientists alike to navigate the substantive questions involved in applying the tools of machine learning to social data.
arXiv Detail & Related papers (2020-01-09T20:04:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.