Heterogeneous Hypergraph Embedding for Recommendation Systems
- URL: http://arxiv.org/abs/2407.03665v1
- Date: Thu, 4 Jul 2024 06:09:11 GMT
- Title: Heterogeneous Hypergraph Embedding for Recommendation Systems
- Authors: Darnbi Sakong, Viet Hung Vu, Thanh Trung Huynh, Phi Le Nguyen, Hongzhi Yin, Quoc Viet Hung Nguyen, Thanh Tam Nguyen,
- Abstract summary: We present a novel Knowledge-enhanced Heterogeneous Hypergraph Recommender System (KHGRec)
KHGRec captures group-wise characteristics of both the interaction network and the KG, modeling complex connections in the KG.
It fuses signals from the input graphs with cross-view self-supervised learning and attention mechanisms.
- Score: 45.49449132970778
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent advancements in recommender systems have focused on integrating knowledge graphs (KGs) to leverage their auxiliary information. The core idea of KG-enhanced recommenders is to incorporate rich semantic information for more accurate recommendations. However, two main challenges persist: i) Neglecting complex higher-order interactions in the KG-based user-item network, potentially leading to sub-optimal recommendations, and ii) Dealing with the heterogeneous modalities of input sources, such as user-item bipartite graphs and KGs, which may introduce noise and inaccuracies. To address these issues, we present a novel Knowledge-enhanced Heterogeneous Hypergraph Recommender System (KHGRec). KHGRec captures group-wise characteristics of both the interaction network and the KG, modeling complex connections in the KG. Using a collaborative knowledge heterogeneous hypergraph (CKHG), it employs two hypergraph encoders to model group-wise interdependencies and ensure explainability. Additionally, it fuses signals from the input graphs with cross-view self-supervised learning and attention mechanisms. Extensive experiments on four real-world datasets show our model's superiority over various state-of-the-art baselines, with an average 5.18\% relative improvement. Additional tests on noise resilience, missing data, and cold-start problems demonstrate the robustness of our KHGRec framework. Our model and evaluation datasets are publicly available at \url{https://github.com/viethungvu1998/KHGRec}.
Related papers
- On the Sweet Spot of Contrastive Views for Knowledge-enhanced
Recommendation [49.18304766331156]
We propose a new contrastive learning framework for KG-enhanced recommendation.
We construct two separate contrastive views for KG and IG, and maximize their mutual information.
Extensive experimental results on three real-world datasets demonstrate the effectiveness and efficiency of our method.
arXiv Detail & Related papers (2023-09-23T14:05:55Z) - Disconnected Emerging Knowledge Graph Oriented Inductive Link Prediction [0.0]
We propose a novel model entitled DEKG-ILP (Disconnected Emerging Knowledge Graph Oriented Inductive Link Prediction)
The module CLRM is developed to extract global relation-based semantic features that are shared between original KGs and DEKGs.
The module GSM is proposed to extract the local subgraph topological information around each link in KGs.
arXiv Detail & Related papers (2022-09-03T10:58:24Z) - Knowledge Graph Contrastive Learning for Recommendation [32.918864602360884]
We design a general Knowledge Graph Contrastive Learning framework to alleviate the information noise for knowledge graph-enhanced recommender systems.
Specifically, we propose a knowledge graph augmentation schema to suppress KG noise in information aggregation.
We exploit additional supervision signals from the KG augmentation process to guide a cross-view contrastive learning paradigm.
arXiv Detail & Related papers (2022-05-02T15:24:53Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - Attentive Knowledge-aware Graph Convolutional Networks with
Collaborative Guidance for Recommendation [36.95691423601792]
We propose attentive Knowledge-aware convolutional networks with Collaborative Guidance for personalized Recommendation (CG-KGR)
CG-KGR is a novel knowledge-aware recommendation model that enables ample and coherent learning of KGs and user-item interactions.
We conduct extensive experiments on four real-world datasets over two recommendation tasks.
arXiv Detail & Related papers (2021-09-05T11:55:20Z) - DSKReG: Differentiable Sampling on Knowledge Graph for Recommendation
with Relational GNN [59.160401038969795]
We propose differentiable sampling on Knowledge Graph for Recommendation with GNN (DSKReG)
We devise a differentiable sampling strategy, which enables the selection of relevant items to be jointly optimized with the model training procedure.
The experimental results demonstrate that our model outperforms state-of-the-art KG-based recommender systems.
arXiv Detail & Related papers (2021-08-26T16:19:59Z) - Learning Intents behind Interactions with Knowledge Graph for
Recommendation [93.08709357435991]
Knowledge graph (KG) plays an increasingly important role in recommender systems.
Existing GNN-based models fail to identify user-item relation at a fine-grained level of intents.
We propose a new model, Knowledge Graph-based Intent Network (KGIN)
arXiv Detail & Related papers (2021-02-14T03:21:36Z) - Toward Subgraph-Guided Knowledge Graph Question Generation with Graph
Neural Networks [53.58077686470096]
Knowledge graph (KG) question generation (QG) aims to generate natural language questions from KGs and target answers.
In this work, we focus on a more realistic setting where we aim to generate questions from a KG subgraph and target answers.
arXiv Detail & Related papers (2020-04-13T15:43:22Z) - Deep Learning on Knowledge Graph for Recommender System: A Survey [36.41255991011155]
A knowledge graph is capable of encoding high-order relations that connect two objects with one or multiple related attributes.
With the help of the emerging Graph Neural Networks (GNN), it is possible to extract both object characteristics and relations from KG.
arXiv Detail & Related papers (2020-03-25T22:53:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.