Q-Adapter: Customizing Pre-trained LLMs to New Preferences with Forgetting Mitigation
- URL: http://arxiv.org/abs/2407.03856v4
- Date: Mon, 03 Mar 2025 08:48:38 GMT
- Title: Q-Adapter: Customizing Pre-trained LLMs to New Preferences with Forgetting Mitigation
- Authors: Yi-Chen Li, Fuxiang Zhang, Wenjie Qiu, Lei Yuan, Chengxing Jia, Zongzhang Zhang, Yang Yu, Bo An,
- Abstract summary: We consider customizing pre-trained Large Language Models (LLMs) with new human preferences.<n>We name our method Q-Adapter as it introduces an adapter module to approximate the residual Q-function for customizing the new preference.<n> Experiments based on the Llama-3.1 model on the DSP dataset and HH-RLHF dataset illustrate the superior effectiveness of Q-Adapter.
- Score: 35.014856057848036
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large Language Models (LLMs), trained on a large amount of corpus, have demonstrated remarkable abilities. However, it may not be sufficient to directly apply open-source LLMs like Llama to certain real-world scenarios, since most of them are trained for \emph{general} purposes. Thus, the demands for customizing publicly available LLMs emerge, but are currently under-studied. In this work, we consider customizing pre-trained LLMs with new human preferences. Specifically, the LLM should not only meet the new preference but also preserve its original capabilities after customization. Drawing inspiration from the observation that human preference can be expressed as a reward model, we propose to cast LLM customization as optimizing the sum of two reward functions, one of which (denoted as $r_1$) was used to pre-train the LLM while the other (denoted as $r_2$) characterizes the new human preference. The obstacle here is that both reward functions are unknown, making the application of modern reinforcement learning methods infeasible. Thanks to the residual Q-learning framework, we can restore the customized LLM with the pre-trained LLM and the \emph{residual Q-function} without the reward function $r_1$. Moreover, we find that for a fixed pre-trained LLM, the reward function $r_2$ can be derived from the residual Q-function, enabling us to directly learn the residual Q-function from the new human preference data upon the Bradley-Terry model. We name our method Q-Adapter as it introduces an adapter module to approximate the residual Q-function for customizing the pre-trained LLM towards the new preference. Experiments based on the Llama-3.1 model on the DSP dataset and HH-RLHF dataset illustrate the superior effectiveness of Q-Adapter on both retaining existing knowledge and learning new preferences. Code is available at https://github.com/mansicer/Q-Adapter.
Related papers
- PITA: Preference-Guided Inference-Time Alignment for LLM Post-Training [9.093854840532062]
PITA is a novel framework that integrates preference feedback directly into the LLM's token generation.<n> PITA learns a small preference-based guidance policy to modify token probabilities at inference time without fine-tuning.<n>We evaluate PITA across diverse tasks, including mathematical reasoning and sentiment classification.
arXiv Detail & Related papers (2025-07-26T21:46:32Z) - ShiQ: Bringing back Bellman to LLMs [37.70964838115103]
We build a practical algorithm, ShiQ for Shifted-Q, that supports off-policy, token-wise learning while remaining simple to implement.<n>We evaluate ShiQ on both synthetic data and real-world benchmarks, e.g., UltraFeedback and BFCL-V3, demonstrating its effectiveness in both single-turn and multi-turn LLM settings.
arXiv Detail & Related papers (2025-05-16T10:12:11Z) - LLM-QE: Improving Query Expansion by Aligning Large Language Models with Ranking Preferences [21.777817032607405]
This paper introduces LLM-QE, a novel approach that leverages Large Language Models (LLMs) to generate document-based query expansions.
Experiments on the zero-shot dense retrieval model, Contriever, demonstrate the effectiveness of LLM-QE, achieving an improvement of over 8%.
LLM-QE also improves the training process of dense retrievers, achieving a more than 5% improvement after fine-tuning.
arXiv Detail & Related papers (2025-02-24T11:15:41Z) - S$^2$R: Teaching LLMs to Self-verify and Self-correct via Reinforcement Learning [51.84977135926156]
We introduce S$2$R, an efficient framework that enhances LLM reasoning by teaching models to self-verify and self-correct during inference.
Our results demonstrate that Qwen2.5-math-7B achieves an accuracy improvement from 51.0% to 81.6%, outperforming models trained on an equivalent amount of long-CoT distilled data.
arXiv Detail & Related papers (2025-02-18T13:40:22Z) - LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization [59.75242204923353]
We introduce LLM-Lasso, a framework that leverages large language models (LLMs) to guide feature selection in Lasso regression.
LLMs generate penalty factors for each feature, which are converted into weights for the Lasso penalty using a simple, tunable model.
Features identified as more relevant by the LLM receive lower penalties, increasing their likelihood of being retained in the final model.
arXiv Detail & Related papers (2025-02-15T02:55:22Z) - Aligning Large Language Models via Fine-grained Supervision [20.35000061196631]
Pre-trained large-scale language models (LLMs) excel at producing coherent articles, yet their outputs may be untruthful, toxic, or fail to align with user expectations.
Current approaches focus on using reinforcement learning with human feedback to improve model alignment.
We propose a method to enhance LLM alignment through fine-grained token-level supervision.
arXiv Detail & Related papers (2024-06-04T20:21:45Z) - One Token Can Help! Learning Scalable and Pluggable Virtual Tokens for Retrieval-Augmented Large Language Models [67.49462724595445]
Retrieval-augmented generation (RAG) is a promising way to improve large language models (LLMs)
We propose a novel method that involves learning scalable and pluggable virtual tokens for RAG.
arXiv Detail & Related papers (2024-05-30T03:44:54Z) - Value Augmented Sampling for Language Model Alignment and Personalization [39.070662999014836]
We present a new framework for reward optimization, Value Augmented Sampling (VAS)
VAS solves for the optimal reward-maximizing policy without co-training the policy and the value function.
Our algorithm unlocks the new capability of composing several rewards and controlling the extent of each one during deployment time.
arXiv Detail & Related papers (2024-05-10T17:59:04Z) - Weak-to-Strong Extrapolation Expedites Alignment [135.12769233630362]
We propose a method called ExPO to boost models' alignment with human preference.
We demonstrate that ExPO consistently improves off-the-shelf DPO/RLHF models.
We shed light on the essence of ExPO amplifying the reward signal learned during alignment training.
arXiv Detail & Related papers (2024-04-25T17:39:50Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
We propose a new fine-tuning method called Self-Play fIne-tuNing (SPIN)
At the heart of SPIN lies a self-play mechanism, where the LLM refines its capability by playing against instances of itself.
This sheds light on the promise of self-play, enabling the achievement of human-level performance in LLMs without the need for expert opponents.
arXiv Detail & Related papers (2024-01-02T18:53:13Z) - Language Reward Modulation for Pretraining Reinforcement Learning [61.76572261146311]
We propose leveraging the capabilities of LRFs as a pretraining signal for reinforcement learning.
Our VLM pretraining approach, which is a departure from previous attempts to use LRFs, can warmstart sample-efficient learning on robot manipulation tasks.
arXiv Detail & Related papers (2023-08-23T17:37:51Z) - LaGR-SEQ: Language-Guided Reinforcement Learning with Sample-Efficient
Querying [71.86163159193327]
Large language models (LLMs) have recently demonstrated their impressive ability to provide context-aware responses via text.
This ability could potentially be used to predict plausible solutions in sequential decision making tasks pertaining to pattern completion.
We introduce LaGR, which uses this predictive ability of LLMs to propose solutions to tasks that have been partially completed by a primary reinforcement learning (RL) agent.
arXiv Detail & Related papers (2023-08-21T02:07:35Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.