TrackPGD: A White-box Attack using Binary Masks against Robust Transformer Trackers
- URL: http://arxiv.org/abs/2407.03946v1
- Date: Thu, 4 Jul 2024 14:02:12 GMT
- Title: TrackPGD: A White-box Attack using Binary Masks against Robust Transformer Trackers
- Authors: Fatemeh Nourilenjan Nokabadi, Yann Batiste Pequignot, Jean-Francois Lalonde, Christian Gagné,
- Abstract summary: Object trackers with transformer backbones have achieved robust performance on visual object tracking datasets.
Due to the backbone differences, the adversarial white-box attacks proposed for object tracking are not transferable to all types of trackers.
We are proposing a novel white-box attack named TrackPGD, which relies on the predicted object binary mask to attack the robust transformer trackers.
- Score: 6.115755665318123
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Object trackers with transformer backbones have achieved robust performance on visual object tracking datasets. However, the adversarial robustness of these trackers has not been well studied in the literature. Due to the backbone differences, the adversarial white-box attacks proposed for object tracking are not transferable to all types of trackers. For instance, transformer trackers such as MixFormerM still function well after black-box attacks, especially in predicting the object binary masks. We are proposing a novel white-box attack named TrackPGD, which relies on the predicted object binary mask to attack the robust transformer trackers. That new attack focuses on annotation masks by adapting the well-known SegPGD segmentation attack, allowing to successfully conduct the white-box attack on trackers relying on transformer backbones. The experimental results indicate that the TrackPGD is able to effectively attack transformer-based trackers such as MixFormerM, OSTrackSTS, and TransT-SEG on several tracking datasets.
Related papers
- Adversarial Bounding Boxes Generation (ABBG) Attack against Visual Object Trackers [6.6810237114686615]
Adversarial perturbations aim to deceive neural networks into predicting inaccurate results.
For visual object trackers, adversarial attacks have been developed to generate perturbations by manipulating the outputs.
We present a novel white-box approach to attack visual object trackers with transformer backbones using only one bounding box.
arXiv Detail & Related papers (2024-11-26T14:30:36Z) - Reproducibility Study on Adversarial Attacks Against Robust Transformer Trackers [18.615714086028632]
New transformer networks have been integrated into object tracking pipelines and have demonstrated strong performance on the latest benchmarks.
This paper focuses on understanding how transformer trackers behave under adversarial attacks and how different attacks perform on tracking datasets as their parameters change.
arXiv Detail & Related papers (2024-06-03T20:13:38Z) - AViTMP: A Tracking-Specific Transformer for Single-Branch Visual Tracking [17.133735660335343]
We propose an Adaptive ViT Model Prediction tracker (AViTMP) to design a customised tracking method.
This method bridges the single-branch network with discriminative models for the first time.
We show that AViTMP achieves state-of-the-art performance, especially in terms of long-term tracking and robustness.
arXiv Detail & Related papers (2023-10-30T13:48:04Z) - Efficient Visual Tracking with Exemplar Transformers [98.62550635320514]
We introduce the Exemplar Transformer, an efficient transformer for real-time visual object tracking.
E.T.Track, our visual tracker that incorporates Exemplar Transformer layers, runs at 47 fps on a CPU.
This is up to 8 times faster than other transformer-based models.
arXiv Detail & Related papers (2021-12-17T18:57:54Z) - Tracklet-Switch Adversarial Attack against Pedestrian Multi-Object
Tracking Trackers [14.135239008740173]
We propose a novel adversarial attack method called Tracklet-Switch (TraSw) against the complete tracking pipeline of Multi-Object Tracking (MOT)
Experiments show that TraSw can achieve an extraordinarily high success attack rate of over 95% by attacking only four frames on average.
arXiv Detail & Related papers (2021-11-17T07:53:45Z) - IoU Attack: Towards Temporally Coherent Black-Box Adversarial Attack for
Visual Object Tracking [70.14487738649373]
Adrial attack arises due to the vulnerability of deep neural networks to perceive input samples injected with imperceptible perturbations.
We propose a decision-based black-box attack method for visual object tracking.
We validate the proposed IoU attack on state-of-the-art deep trackers.
arXiv Detail & Related papers (2021-03-27T16:20:32Z) - Track to Detect and Segment: An Online Multi-Object Tracker [81.15608245513208]
TraDeS is an online joint detection and tracking model, exploiting tracking clues to assist detection end-to-end.
TraDeS infers object tracking offset by a cost volume, which is used to propagate previous object features.
arXiv Detail & Related papers (2021-03-16T02:34:06Z) - TrackFormer: Multi-Object Tracking with Transformers [92.25832593088421]
TrackFormer is an end-to-end multi-object tracking and segmentation model based on an encoder-decoder Transformer architecture.
New track queries are spawned by the DETR object detector and embed the position of their corresponding object over time.
TrackFormer achieves a seamless data association between frames in a new tracking-by-attention paradigm.
arXiv Detail & Related papers (2021-01-07T18:59:29Z) - Efficient Adversarial Attacks for Visual Object Tracking [73.43180372379594]
We present an end-to-end network FAN (Fast Attack Network) that uses a novel drift loss combined with the embedded feature loss to attack the Siamese network based trackers.
Under a single GPU, FAN is efficient in the training speed and has a strong attack performance.
arXiv Detail & Related papers (2020-08-01T08:47:58Z) - Cooling-Shrinking Attack: Blinding the Tracker with Imperceptible Noises [87.53808756910452]
A cooling-shrinking attack method is proposed to deceive state-of-the-art SiameseRPN-based trackers.
Our method has good transferability and is able to deceive other top-performance trackers such as DaSiamRPN, DaSiamRPN-UpdateNet, and DiMP.
arXiv Detail & Related papers (2020-03-21T07:13:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.