Convergence rates for the Trotter-Kato splitting
- URL: http://arxiv.org/abs/2407.04045v1
- Date: Thu, 4 Jul 2024 16:37:54 GMT
- Title: Convergence rates for the Trotter-Kato splitting
- Authors: Simon Becker, Niklas Galke, Robert Salzmann, Lauritz van Luijk,
- Abstract summary: We study convergence rates of the Trotter-Kato splitting $eA+L = lim_n to infty (eL/n eA/n)n$ in the strong operator topology.
- Score: 1.3624495460189865
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study convergence rates of the Trotter-Kato splitting $e^{A+L} = \lim_{n \to \infty} (e^{L/n} e^{A/n})^n$ in the strong operator topology. In the first part, we use complex interpolation theory to treat generators $L$ and $A$ of contraction semigroups on Banach spaces, with $L$ relatively $A$-bounded. In the second part, we study unitary dynamics on Hilbert spaces and develop a new technique based on the concept of energy constraints. Our results provide a complete picture of the convergence rates for the Trotter splitting for all common types of Schr\"odinger and Dirac operators, including singular, confining and magnetic vector potentials, as well as molecular many-body Hamiltonians in dimension $d=3$. Using the Brezis-Mironescu inequality, we derive convergence rates for the Schr\"odinger operator with $V(x)=\pm |x|^{-a}$ potential. In each case, our conditions are fully explicit.
Related papers
- On the Computational Complexity of Schrödinger Operators [6.1436827446807705]
We study computational problems related to the Schr"odinger operator $H = -Delta + V$ in the real space.
We prove that (i) simulating the dynamics generated by the Schr"odinger operator implements universal quantum computation, i.e., it is BQP-hard, and (ii) estimating the ground energy of the Schr"odinger operator is as hard as estimating that of local Hamiltonians with no sign problem (a.k.a. stoquastic Hamiltonians)
This result is particularly intriguing because the ground energy problem for general bosonic Hamiltonians is known
arXiv Detail & Related papers (2024-11-07T19:39:52Z) - Small Circle Expansion for Adjoint QCD$_2$ with Periodic Boundary Conditions [0.0]
Supersymmetry is found at the adjoint mass-squared $g2 hvee/ (2pi)$, where $hvee$ is the dual Coxeter number of $G$.
We generalize our results to other gauge groupsG$, for which supersymmetry is found at the adjoint mass-squared $g2 hvee/ (2pi)$, where $hvee$ is the dual Coxeter number of $G$.
arXiv Detail & Related papers (2024-06-24T19:07:42Z) - Vacuum Force and Confinement [65.268245109828]
We show that confinement of quarks and gluons can be explained by their interaction with the vacuum Abelian gauge field $A_sfvac$.
arXiv Detail & Related papers (2024-02-09T13:42:34Z) - Quantum connection, charges and virtual particles [65.268245109828]
A quantum bundle $L_hbar$ is endowed with a connection $A_hbar$ and its sections are standard wave functions $psi$ obeying the Schr"odinger equation.
We will lift the bundles $L_Cpm$ and connection $A_hbar$ on them to the relativistic phase space $T*R3,1$ and couple them to the Dirac spinor bundle describing both particles and antiparticles.
arXiv Detail & Related papers (2023-10-10T10:27:09Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
Under nonlinear measurements, most prior results are non-uniform, i.e., they hold with high probability for a fixed $mathbfx*$ rather than for all $mathbfx*$ simultaneously.
Our framework accommodates GCS with 1-bit/uniformly quantized observations and single index models as canonical examples.
We also develop a concentration inequality that produces tighter bounds for product processes whose index sets have low metric entropy.
arXiv Detail & Related papers (2023-09-25T17:54:19Z) - More on symmetry resolved operator entanglement [0.0]
We focus on spin chains with a global $U(1)$ conservation law, and on operators $O$ with a well-defined $U(1)$ charge.
We employ the notion of symmetry resolved operator entanglement (SROE) introduced in [PRX Quantum 4, 010318 (2023) and extend the results of the latter paper in several directions.
Our main results are: i) the SROE of $rho_beta$ obeys the operator area law; ii) for free fermions, local operators in Heisenberg picture can have a SROE that grows logarithmically in time or saturate
arXiv Detail & Related papers (2023-09-07T21:58:18Z) - Rigorous derivation of the Efimov effect in a simple model [68.8204255655161]
We consider a system of three identical bosons in $mathbbR3$ with two-body zero-range interactions and a three-body hard-core repulsion of a given radius $a>0$.
arXiv Detail & Related papers (2023-06-21T10:11:28Z) - Quantum and classical low-degree learning via a dimension-free Remez
inequality [52.12931955662553]
We show a new way to relate functions on the hypergrid to their harmonic extensions over the polytorus.
We show the supremum of a function $f$ over products of the cyclic group $exp(2pi i k/K)_k=1K$.
We extend to new spaces a recent line of work citeEI22, CHP, VZ22 that gave similarly efficient methods for learning low-degrees on hypercubes and observables on qubits.
arXiv Detail & Related papers (2023-01-04T04:15:40Z) - Annihilating Entanglement Between Cones [77.34726150561087]
We show that Lorentz cones are the only cones with a symmetric base for which a certain stronger version of the resilience property is satisfied.
Our proof exploits the symmetries of the Lorentz cones and applies two constructions resembling protocols for entanglement distillation.
arXiv Detail & Related papers (2021-10-22T15:02:39Z) - Holomorphic family of Dirac-Coulomb Hamiltonians in arbitrary dimension [0.0]
We study massless 1-dimensional Dirac-Coulomb Hamiltonians, that is, operators on the half-line of the form $D_omega,lambda:=beginbmatrix-fraclambda+omegax&-partial_x.
arXiv Detail & Related papers (2021-07-08T11:48:57Z) - Nonparametric approximation of conditional expectation operators [0.3655021726150368]
We investigate the approximation of the $L2$-operator defined by $[Pf](x) := mathbbE[ f(Y) mid X = x ]$ under minimal assumptions.
We prove that $P$ can be arbitrarily well approximated in operator norm by Hilbert-Schmidt operators acting on a reproducing kernel space.
arXiv Detail & Related papers (2020-12-23T19:06:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.