Artificial Intelligence and Algorithmic Price Collusion in Two-sided Markets
- URL: http://arxiv.org/abs/2407.04088v1
- Date: Thu, 4 Jul 2024 17:57:56 GMT
- Title: Artificial Intelligence and Algorithmic Price Collusion in Two-sided Markets
- Authors: Cristian Chica, Yinglong Guo, Gilad Lerman,
- Abstract summary: We examine how AI agents using Q-learning engage in tacit collusion in two-sided markets.
Our experiments reveal that AI-driven platforms achieve higher collusion levels compared to Bertrand competition.
Increased network externalities significantly enhance collusion, suggesting AI algorithms exploit them to maximize profits.
- Score: 9.053163124987535
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Algorithmic price collusion facilitated by artificial intelligence (AI) algorithms raises significant concerns. We examine how AI agents using Q-learning engage in tacit collusion in two-sided markets. Our experiments reveal that AI-driven platforms achieve higher collusion levels compared to Bertrand competition. Increased network externalities significantly enhance collusion, suggesting AI algorithms exploit them to maximize profits. Higher user heterogeneity or greater utility from outside options generally reduce collusion, while higher discount rates increase it. Tacit collusion remains feasible even at low discount rates. To mitigate collusive behavior and inform potential regulatory measures, we propose incorporating a penalty term in the Q-learning algorithm.
Related papers
- Naive Algorithmic Collusion: When Do Bandit Learners Cooperate and When Do They Compete? [0.0]
Algorithmic agents are used in a variety of competitive decision settings.
We study the behavior of multi-armed bandit machine learning algorithms used in situations where agents are competing.
We show that these context-free bandits, with no knowledge of opponents' choices or outcomes, still will consistently learn collusive behavior.
arXiv Detail & Related papers (2024-11-25T16:58:07Z) - Raising the Stakes: Performance Pressure Improves AI-Assisted Decision Making [57.53469908423318]
We show the effects of performance pressure on AI advice reliance when laypeople complete a common AI-assisted task.
We find that when the stakes are high, people use AI advice more appropriately than when stakes are lower, regardless of the presence of an AI explanation.
arXiv Detail & Related papers (2024-10-21T22:39:52Z) - Multi-Agent Imitation Learning: Value is Easy, Regret is Hard [52.31989962031179]
We study a multi-agent imitation learning (MAIL) problem where we take the perspective of a learner attempting to coordinate a group of agents.
Most prior work in MAIL essentially reduces the problem to matching the behavior of the expert within the support of the demonstrations.
While doing so is sufficient to drive the value gap between the learner and the expert to zero under the assumption that agents are non-strategic, it does not guarantee to deviations by strategic agents.
arXiv Detail & Related papers (2024-06-06T16:18:20Z) - Tacit algorithmic collusion in deep reinforcement learning guided price competition: A study using EV charge pricing game [0.0]
Players in pricing games with complex structures are increasingly adopting artificial intelligence (AI) aided learning algorithms.
Recent studies of games in canonical forms have shown contrasting claims ranging from none to a high level of tacit collusion.
We consider a practical game where EV charging hubs compete by dynamically varying their prices.
Results from our numerical case study yield collusion index values between 0.14 and 0.45, suggesting a low to moderate level of collusion.
arXiv Detail & Related papers (2024-01-25T16:51:52Z) - Robust and Performance Incentivizing Algorithms for Multi-Armed Bandits
with Strategic Agents [57.627352949446625]
We consider a variant of the multi-armed bandit problem.
Specifically, the arms are strategic agents who can improve their rewards or absorb them.
We identify a class of MAB algorithms which satisfy a collection of properties and show that they lead to mechanisms that incentivize top level performance at equilibrium.
arXiv Detail & Related papers (2023-12-13T06:54:49Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
We take a closer look at AI fairness and analyze how lack of AI fairness can lead to deepening of biases over time.
We discuss how biased models can lead to more negative real-world outcomes for certain groups.
If the issues persist, they could be reinforced by interactions with other risks and have severe implications on society in the form of social unrest.
arXiv Detail & Related papers (2023-04-16T11:22:59Z) - Artificial Intelligence and Dual Contract [2.1756081703276]
We develop a model where two principals, each equipped with independent Q-learning algorithms, interact with a single agent.
Our findings reveal that the strategic behavior of AI principals hinges crucially on the alignment of their profits.
arXiv Detail & Related papers (2023-03-22T07:31:44Z) - Winning at Any Cost -- Infringing the Cartel Prohibition With
Reinforcement Learning [1.1470070927586016]
In e-commerce scenarios, multiple reinforcement learning agents can set prices based on their competitor's prices.
We build a scenario that is based on a modified version of a prisoner's dilemma where three agents play the game of rock paper scissors.
Our results indicate that the action selection can be dissected into specific stages, establishing the possibility to develop collusion prevention systems.
arXiv Detail & Related papers (2021-07-05T08:21:52Z) - Exploration and Incentives in Reinforcement Learning [107.42240386544633]
We consider complex exploration problems, where each agent faces the same (but unknown) MDP.
Agents control the choice of policies, whereas an algorithm can only issue recommendations.
We design an algorithm which explores all reachable states in the MDP.
arXiv Detail & Related papers (2021-02-28T00:15:53Z) - Understanding algorithmic collusion with experience replay [0.0]
In an infinitely repeated pricing game, pricing algorithms based on artificial intelligence (Q-learning) may consistently learn to charge supra-competitive prices.
Although concerns on algorithmic collusion have arisen, little is known on underlying factors.
arXiv Detail & Related papers (2021-02-18T03:28:41Z) - Adversarial Attacks on Linear Contextual Bandits [87.08004581867537]
Malicious agents may have incentives to attack the bandit algorithm to induce it to perform a desired behavior.
We show that a malicious agent can force a linear contextual bandit algorithm to pull any desired arm $T - o(T)$ times over a horizon of $T$ steps.
We also investigate the case when a malicious agent is interested in affecting the behavior of the bandit algorithm in a single context.
arXiv Detail & Related papers (2020-02-10T15:04:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.