Looking for Tiny Defects via Forward-Backward Feature Transfer
- URL: http://arxiv.org/abs/2407.04092v2
- Date: Mon, 8 Jul 2024 13:19:01 GMT
- Title: Looking for Tiny Defects via Forward-Backward Feature Transfer
- Authors: Alex Costanzino, Pierluigi Zama Ramirez, Giuseppe Lisanti, Luigi Di Stefano,
- Abstract summary: We introduce a novel benchmark that evaluates methods on the original, high-resolution image and ground-truth masks.
Our benchmark includes a metric that captures robustness with respect to defect size.
Our proposal features the highest robustness to defect size, runs at the fastest speed and yields state-of-the-art segmentation performance.
- Score: 12.442574943138794
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Motivated by efficiency requirements, most anomaly detection and segmentation (AD&S) methods focus on processing low-resolution images, e.g., $224\times 224$ pixels, obtained by downsampling the original input images. In this setting, downsampling is typically applied also to the provided ground-truth defect masks. Yet, as numerous industrial applications demand identification of both large and tiny defects, the above-described protocol may fall short in providing a realistic picture of the actual performance attainable by current methods. Hence, in this work, we introduce a novel benchmark that evaluates methods on the original, high-resolution image and ground-truth masks, focusing on segmentation performance as a function of the size of anomalies. Our benchmark includes a metric that captures robustness with respect to defect size, i.e., the ability of a method to preserve good localization from large anomalies to tiny ones. Furthermore, we introduce an AD&S approach based on a novel Teacher-Student paradigm which relies on two shallow MLPs (the Students) that learn to transfer patch features across the layers of a frozen vision transformer (the Teacher). By means of our benchmark, we evaluate our proposal and other recent AD&S methods on high-resolution inputs containing large and tiny defects. Our proposal features the highest robustness to defect size, runs at the fastest speed, yields state-of-the-art performance on the MVTec AD dataset and state-of-the-art segmentation performance on the VisA dataset.
Related papers
- HiRes-LLaVA: Restoring Fragmentation Input in High-Resolution Large Vision-Language Models [96.76995840807615]
HiRes-LLaVA is a novel framework designed to process any size of high-resolution input without altering the original contextual and geometric information.
HiRes-LLaVA comprises two innovative components: (i) a SliceRestore adapter that reconstructs sliced patches into their original form, efficiently extracting both global and local features via down-up-sampling and convolution layers, and (ii) a Self-Mining Sampler to compress the vision tokens based on themselves.
arXiv Detail & Related papers (2024-07-11T17:42:17Z) - Feature Attenuation of Defective Representation Can Resolve Incomplete Masking on Anomaly Detection [1.0358639819750703]
In unsupervised anomaly detection (UAD) research, it is necessary to develop a computationally efficient and scalable solution.
We revisit the reconstruction-by-inpainting approach and rethink to improve it by analyzing strengths and weaknesses.
We propose Feature Attenuation of Defective Representation (FADeR) that only employs two layers which attenuates feature information of anomaly reconstruction.
arXiv Detail & Related papers (2024-07-05T15:44:53Z) - SOEDiff: Efficient Distillation for Small Object Editing [9.876242696640205]
A new task known as small object editing (SOE) focuses on text-based image inpainting within a constrained, small-sized area.
We introduce a novel training-based approach, SOEDiff, aimed at enhancing the capability of baseline models like StableDiffusion in editing small-sized objects.
Our method presents significant improvements on the test dataset collected from MSCOCO and OpenImage.
arXiv Detail & Related papers (2024-05-15T06:14:31Z) - MoE-FFD: Mixture of Experts for Generalized and Parameter-Efficient Face Forgery Detection [54.545054873239295]
Deepfakes have recently raised significant trust issues and security concerns among the public.
ViT-based methods take advantage of the expressivity of transformers, achieving superior detection performance.
This work introduces Mixture-of-Experts modules for Face Forgery Detection (MoE-FFD), a generalized yet parameter-efficient ViT-based approach.
arXiv Detail & Related papers (2024-04-12T13:02:08Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Learning from Multi-Perception Features for Real-Word Image
Super-resolution [87.71135803794519]
We propose a novel SR method called MPF-Net that leverages multiple perceptual features of input images.
Our method incorporates a Multi-Perception Feature Extraction (MPFE) module to extract diverse perceptual information.
We also introduce a contrastive regularization term (CR) that improves the model's learning capability.
arXiv Detail & Related papers (2023-05-26T07:35:49Z) - Activation to Saliency: Forming High-Quality Labels for Unsupervised
Salient Object Detection [54.92703325989853]
We propose a two-stage Activation-to-Saliency (A2S) framework that effectively generates high-quality saliency cues.
No human annotations are involved in our framework during the whole training process.
Our framework reports significant performance compared with existing USOD methods.
arXiv Detail & Related papers (2021-12-07T11:54:06Z) - Multi-Scale Aligned Distillation for Low-Resolution Detection [68.96325141432078]
This paper focuses on boosting the performance of low-resolution models by distilling knowledge from a high- or multi-resolution model.
On several instance-level detection tasks and datasets, the low-resolution models trained via our approach perform competitively with high-resolution models trained via conventional multi-scale training.
arXiv Detail & Related papers (2021-09-14T12:53:35Z) - Same Same But DifferNet: Semi-Supervised Defect Detection with
Normalizing Flows [24.734388664558708]
We propose DifferNet: It leverages the descriptiveness of features extracted by convolutional neural networks to estimate their density.
Based on these likelihoods we develop a scoring function that indicates defects.
We demonstrate the superior performance over existing approaches on the challenging and newly proposed MVTec AD and Magnetic Tile Defects datasets.
arXiv Detail & Related papers (2020-08-28T10:49:28Z) - Feature Super-Resolution Based Facial Expression Recognition for
Multi-scale Low-Resolution Faces [7.634398926381845]
Super-resolution method is often used to enhance low-resolution images, but the performance on FER task is limited when on images of very low resolution.
In this work, inspired by feature super-resolution methods for object detection, we proposed a novel generative adversary network-based super-resolution method for robust facial expression recognition.
arXiv Detail & Related papers (2020-04-05T15:38:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.