Biometric Authentication Based on Enhanced Remote Photoplethysmography Signal Morphology
- URL: http://arxiv.org/abs/2407.04127v2
- Date: Fri, 18 Oct 2024 04:23:00 GMT
- Title: Biometric Authentication Based on Enhanced Remote Photoplethysmography Signal Morphology
- Authors: Zhaodong Sun, Xiaobai Li, Jukka Komulainen, Guoying Zhao,
- Abstract summary: Remote photoplesthymography (rmography) is a non-contact method for measuring cardiac signals from facial videos.
Recent studies have shown that each individual possesses a unique c signal morphology that can be utilized as a biometric identifier.
Our approach needs only de-identified facial videos with subject IDs to train r authentication models.
- Score: 31.017229351857655
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Remote photoplethysmography (rPPG) is a non-contact method for measuring cardiac signals from facial videos, offering a convenient alternative to contact photoplethysmography (cPPG) obtained from contact sensors. Recent studies have shown that each individual possesses a unique cPPG signal morphology that can be utilized as a biometric identifier, which has inspired us to utilize the morphology of rPPG signals extracted from facial videos for person authentication. Since the facial appearance and rPPG are mixed in the facial videos, we first de-identify facial videos to remove facial appearance while preserving the rPPG information, which protects facial privacy and guarantees that only rPPG is used for authentication. The de-identified videos are fed into an rPPG model to get the rPPG signal morphology for authentication. In the first training stage, unsupervised rPPG training is performed to get coarse rPPG signals. In the second training stage, an rPPG-cPPG hybrid training is performed by incorporating external cPPG datasets to achieve rPPG biometric authentication and enhance rPPG signal morphology. Our approach needs only de-identified facial videos with subject IDs to train rPPG authentication models. The experimental results demonstrate that rPPG signal morphology hidden in facial videos can be used for biometric authentication. The code is available at https://github.com/zhaodongsun/rppg_biometrics.
Related papers
- Progressive Retinal Image Registration via Global and Local Deformable Transformations [49.032894312826244]
We propose a hybrid registration framework called HybridRetina.
We use a keypoint detector and a deformation network called GAMorph to estimate the global transformation and local deformable transformation.
Experiments on two widely-used datasets, FIRE and FLoRI21, show that our proposed HybridRetina significantly outperforms some state-of-the-art methods.
arXiv Detail & Related papers (2024-09-02T08:43:50Z) - Intra-video Positive Pairs in Self-Supervised Learning for Ultrasound [65.23740556896654]
Self-supervised learning (SSL) is one strategy for addressing the paucity of labelled data in medical imaging.
In this study, we investigated the effect of utilizing proximal, distinct images from the same B-mode ultrasound video as pairs for SSL.
Named Intra-Video Positive Pairs (IVPP), the method surpassed previous ultrasound-specific contrastive learning methods' average test accuracy on COVID-19 classification.
arXiv Detail & Related papers (2024-03-12T14:57:57Z) - Facial Kinship Verification from remote photoplethysmography [8.212664345436092]
Kinship Verification (FKV) aims at automatically determining whether two subjects have a kinship relation based on human faces.
Traditional FKV faces challenges as it is vulnerable to spoof attacks and raises privacy issues.
In this paper, we explore for the first time the FKV with vital bio-signals, focusing on remote Photoplethys reflection.
arXiv Detail & Related papers (2023-09-14T19:33:11Z) - Facial Video-based Remote Physiological Measurement via Self-supervised
Learning [9.99375728024877]
We introduce a novel framework that learns to estimate r signals from facial videos without the need of ground truth signals.
Negative samples are generated via a learnable frequency module, which performs nonlinear signal frequency transformation.
Next, we introduce a local r expert aggregation module to estimate r signals from augmented samples.
It encodes complementary pulsation information from different face regions and aggregate them into one r prediction.
arXiv Detail & Related papers (2022-10-27T13:03:23Z) - Benchmarking Joint Face Spoofing and Forgery Detection with Visual and
Physiological Cues [81.15465149555864]
We establish the first joint face spoofing and detection benchmark using both visual appearance and physiological r cues.
To enhance the r periodicity discrimination, we design a two-branch physiological network using both facial powerful rtemporal signal map and its continuous wavelet transformed counterpart as inputs.
arXiv Detail & Related papers (2022-08-10T15:41:48Z) - Contrast-Phys: Unsupervised Video-based Remote Physiological Measurement
via Spatiotemporal Contrast [17.691683039742323]
Video-based remote physiological measurement face videos to measure the blood volume change signal, which is also called remote photoplethysmography (r)
We use a 3DCNN model to generate multiple rtemporal signals from each video in different locations and train the model with a contrastive loss where r signals from the same video are pulled together while those from different videos are pushed away.
arXiv Detail & Related papers (2022-08-08T19:30:57Z) - Hiding Your Signals: A Security Analysis of PPG-based Biometric
Authentication [19.305819981863323]
Photoplethysmography (r) is easy to measure, making it more attractive than many other physiological signals for biometric authentication.
With the advent of remote LG PPG (r), unobservability has been challenged when the attacker can remotely steal the r signals by monitoring the victim's face.
In PPG-based authentication, current attack approaches mandate the victim's PPG signal, making r-based attacks neglected.
We propose an active defence strategy to hide the physiological signals of the face to resist the attack.
arXiv Detail & Related papers (2022-07-10T11:04:56Z) - Identifying Rhythmic Patterns for Face Forgery Detection and
Categorization [46.21354355137544]
We propose a framework for face forgery detection and categorization consisting of: 1) a Spatial-Temporal Filtering Network (STFNet) for PPG signals, and 2) a Spatial-Temporal Interaction Network (STINet) for constraint and interaction of PPG signals.
With insight into the generation of forgery methods, we further propose intra-source and inter-source blending to boost the performance of the framework.
arXiv Detail & Related papers (2022-07-04T04:57:06Z) - TransRPPG: Remote Photoplethysmography Transformer for 3D Mask Face
Presentation Attack Detection [53.98866801690342]
3D mask face presentation attack detection (PAD) plays a vital role in securing face recognition systems from 3D mask attacks.
We propose a pure r transformer (TransR) framework for learning live intrinsicness representation efficiently.
Our TransR is lightweight and efficient (with only 547K parameters and 763MOPs) which is promising for mobile-level applications.
arXiv Detail & Related papers (2021-04-15T12:33:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.