Defense Against Syntactic Textual Backdoor Attacks with Token Substitution
- URL: http://arxiv.org/abs/2407.04179v1
- Date: Thu, 4 Jul 2024 22:48:57 GMT
- Title: Defense Against Syntactic Textual Backdoor Attacks with Token Substitution
- Authors: Xinglin Li, Xianwen He, Yao Li, Minhao Cheng,
- Abstract summary: It embeds carefully chosen triggers into a victim model at the training stage, and makes the model erroneously predict inputs containing the same triggers as a certain class.
This paper proposes a novel online defense algorithm that effectively counters syntax-based as well as special token-based backdoor attacks.
- Score: 15.496176148454849
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Textual backdoor attacks present a substantial security risk to Large Language Models (LLM). It embeds carefully chosen triggers into a victim model at the training stage, and makes the model erroneously predict inputs containing the same triggers as a certain class. Prior backdoor defense methods primarily target special token-based triggers, leaving syntax-based triggers insufficiently addressed. To fill this gap, this paper proposes a novel online defense algorithm that effectively counters syntax-based as well as special token-based backdoor attacks. The algorithm replaces semantically meaningful words in sentences with entirely different ones but preserves the syntactic templates or special tokens, and then compares the predicted labels before and after the substitution to determine whether a sentence contains triggers. Experimental results confirm the algorithm's performance against these two types of triggers, offering a comprehensive defense strategy for model integrity.
Related papers
- A Study of Backdoors in Instruction Fine-tuned Language Models [16.10608633005216]
Backdoor data poisoning is a serious security concern due to the evasive nature of such attacks.
Such backdoor attacks can: alter response sentiment, violate censorship, over-refuse (invoke censorship for legitimate queries), inject false content, or trigger nonsense responses (hallucinations)
arXiv Detail & Related papers (2024-06-12T00:01:32Z) - Defending Large Language Models against Jailbreak Attacks via Semantic
Smoothing [107.97160023681184]
Aligned large language models (LLMs) are vulnerable to jailbreaking attacks.
We propose SEMANTICSMOOTH, a smoothing-based defense that aggregates predictions of semantically transformed copies of a given input prompt.
arXiv Detail & Related papers (2024-02-25T20:36:03Z) - OrderBkd: Textual backdoor attack through repositioning [0.0]
Third-party datasets and pre-trained machine learning models pose a threat to NLP systems.
Existing backdoor attacks involve poisoning the data samples such as insertion of tokens or sentence paraphrasing.
Our main difference from the previous work is that we use the reposition of a two words in a sentence as a trigger.
arXiv Detail & Related papers (2024-02-12T14:53:37Z) - Prompt as Triggers for Backdoor Attack: Examining the Vulnerability in
Language Models [41.1058288041033]
We propose ProAttack, a novel and efficient method for performing clean-label backdoor attacks based on the prompt.
Our method does not require external triggers and ensures correct labeling of poisoned samples, improving the stealthy nature of the backdoor attack.
arXiv Detail & Related papers (2023-05-02T06:19:36Z) - Backdoor Attacks with Input-unique Triggers in NLP [34.98477726215485]
Backdoor attack aims at inducing neural models to make incorrect predictions for poison data while keeping predictions on the clean dataset unchanged.
In this paper, we propose an input-unique backdoor attack(NURA), where we generate backdoor triggers unique to inputs.
arXiv Detail & Related papers (2023-03-25T01:41:54Z) - Hidden Killer: Invisible Textual Backdoor Attacks with Syntactic Trigger [48.59965356276387]
We propose to use syntactic structure as the trigger in textual backdoor attacks.
We conduct extensive experiments to demonstrate that the trigger-based attack method can achieve comparable attack performance.
These results also reveal the significant insidiousness and harmfulness of textual backdoor attacks.
arXiv Detail & Related papers (2021-05-26T08:54:19Z) - Towards Variable-Length Textual Adversarial Attacks [68.27995111870712]
It is non-trivial to conduct textual adversarial attacks on natural language processing tasks due to the discreteness of data.
In this paper, we propose variable-length textual adversarial attacks(VL-Attack)
Our method can achieve $33.18$ BLEU score on IWSLT14 German-English translation, achieving an improvement of $1.47$ over the baseline model.
arXiv Detail & Related papers (2021-04-16T14:37:27Z) - Hidden Backdoor Attack against Semantic Segmentation Models [60.0327238844584]
The emphbackdoor attack intends to embed hidden backdoors in deep neural networks (DNNs) by poisoning training data.
We propose a novel attack paradigm, the emphfine-grained attack, where we treat the target label from the object-level instead of the image-level.
Experiments show that the proposed methods can successfully attack semantic segmentation models by poisoning only a small proportion of training data.
arXiv Detail & Related papers (2021-03-06T05:50:29Z) - Poisoned classifiers are not only backdoored, they are fundamentally
broken [84.67778403778442]
Under a commonly-studied backdoor poisoning attack against classification models, an attacker adds a small trigger to a subset of the training data.
It is often assumed that the poisoned classifier is vulnerable exclusively to the adversary who possesses the trigger.
In this paper, we show empirically that this view of backdoored classifiers is incorrect.
arXiv Detail & Related papers (2020-10-18T19:42:44Z) - Generating Label Cohesive and Well-Formed Adversarial Claims [44.29895319592488]
Adversarial attacks reveal important vulnerabilities and flaws of trained models.
We investigate how to generate adversarial attacks against fact checking systems that preserve the ground truth meaning.
We find that the generated attacks maintain the directionality and semantic validity of the claim better than previous work.
arXiv Detail & Related papers (2020-09-17T10:50:42Z) - Rethinking the Trigger of Backdoor Attack [83.98031510668619]
Currently, most of existing backdoor attacks adopted the setting of emphstatic trigger, $i.e.,$ triggers across the training and testing images follow the same appearance and are located in the same area.
We demonstrate that such an attack paradigm is vulnerable when the trigger in testing images is not consistent with the one used for training.
arXiv Detail & Related papers (2020-04-09T17:19:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.