Smart Vision-Language Reasoners
- URL: http://arxiv.org/abs/2407.04212v1
- Date: Fri, 5 Jul 2024 01:47:21 GMT
- Title: Smart Vision-Language Reasoners
- Authors: Denisa Roberts, Lucas Roberts,
- Abstract summary: We investigate vision-language models (VLM) as reasoners.
The ability to form abstractions underlies mathematical reasoning, problem-solving, and other Math AI tasks.
We employ the abstractions given in the SMART task as meta-reasoning and problem-solving skills along eight axes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this article, we investigate vision-language models (VLM) as reasoners. The ability to form abstractions underlies mathematical reasoning, problem-solving, and other Math AI tasks. Several formalisms have been given to these underlying abstractions and skills utilized by humans and intelligent systems for reasoning. Furthermore, human reasoning is inherently multimodal, and as such, we focus our investigations on multimodal AI. In this article, we employ the abstractions given in the SMART task (Simple Multimodal Algorithmic Reasoning Task) introduced in \cite{cherian2022deep} as meta-reasoning and problem-solving skills along eight axes: math, counting, path, measure, logic, spatial, and pattern. We investigate the ability of vision-language models to reason along these axes and seek avenues of improvement. Including composite representations with vision-language cross-attention enabled learning multimodal representations adaptively from fused frozen pretrained backbones for better visual grounding. Furthermore, proper hyperparameter and other training choices led to strong improvements (up to $48\%$ gain in accuracy) on the SMART task, further underscoring the power of deep multimodal learning. The smartest VLM, which includes a novel QF multimodal layer, improves upon the best previous baselines in every one of the eight fundamental reasoning skills. End-to-end code is available at https://github.com/smarter-vlm/smarter.
Related papers
- Imagine while Reasoning in Space: Multimodal Visualization-of-Thought [70.74453180101365]
Chain-of-Thought (CoT) prompting has proven highly effective for enhancing complex reasoning in Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs)
We propose a new reasoning paradigm, Multimodal Visualization-of-Thought (MVoT)
It enables visual thinking in MLLMs by generating image visualizations of their reasoning traces.
arXiv Detail & Related papers (2025-01-13T18:23:57Z) - Can MLLMs Reason in Multimodality? EMMA: An Enhanced MultiModal ReAsoning Benchmark [73.27104042215207]
We introduce EMMA, a benchmark targeting organic multimodal reasoning across mathematics, physics, chemistry, and coding.
EMMA tasks demand advanced cross-modal reasoning that cannot be addressed by reasoning independently in each modality.
Our evaluation of state-of-the-art MLLMs on EMMA reveals significant limitations in handling complex multimodal and multi-step reasoning tasks.
arXiv Detail & Related papers (2025-01-09T18:55:52Z) - MageBench: Bridging Large Multimodal Models to Agents [90.59091431806793]
LMMs have shown impressive visual understanding capabilities, with the potential to be applied in agents.
Existing benchmarks mostly assess their reasoning abilities in language part.
MageBench is a reasoning capability oriented multimodal agent benchmark.
arXiv Detail & Related papers (2024-12-05T17:08:19Z) - Visual-O1: Understanding Ambiguous Instructions via Multi-modal Multi-turn Chain-of-thoughts Reasoning [53.45295657891099]
This paper proposes Visual-O1, a multi-modal multi-turn chain-of-thought reasoning framework.
It simulates human multi-modal multi-turn reasoning, providing instantial experience for highly intelligent models.
Our work highlights the potential of artificial intelligence to work like humans in real-world scenarios with uncertainty and ambiguity.
arXiv Detail & Related papers (2024-10-04T11:18:41Z) - Are Deep Neural Networks SMARTer than Second Graders? [85.60342335636341]
We evaluate the abstraction, deduction, and generalization abilities of neural networks in solving visuo-linguistic puzzles designed for children in the 6--8 age group.
Our dataset consists of 101 unique puzzles; each puzzle comprises a picture question, and their solution needs a mix of several elementary skills, including arithmetic, algebra, and spatial reasoning.
Experiments reveal that while powerful deep models offer reasonable performances on puzzles in a supervised setting, they are not better than random accuracy when analyzed for generalization.
arXiv Detail & Related papers (2022-12-20T04:33:32Z) - WenLan 2.0: Make AI Imagine via a Multimodal Foundation Model [74.4875156387271]
We develop a novel foundation model pre-trained with huge multimodal (visual and textual) data.
We show that state-of-the-art results can be obtained on a wide range of downstream tasks.
arXiv Detail & Related papers (2021-10-27T12:25:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.