NeuFair: Neural Network Fairness Repair with Dropout
- URL: http://arxiv.org/abs/2407.04268v3
- Date: Mon, 2 Sep 2024 17:13:22 GMT
- Title: NeuFair: Neural Network Fairness Repair with Dropout
- Authors: Vishnu Asutosh Dasu, Ashish Kumar, Saeid Tizpaz-Niari, Gang Tan,
- Abstract summary: This paper investigates neuron dropout as a post-processing bias mitigation for deep neural networks (DNNs)
We show that our design of randomized algorithms is effective and efficient in improving fairness (up to 69%) with minimal or no model performance degradation.
- Score: 19.49034966552718
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigates neuron dropout as a post-processing bias mitigation for deep neural networks (DNNs). Neural-driven software solutions are increasingly applied in socially critical domains with significant fairness implications. While neural networks are exceptionally good at finding statistical patterns from data, they may encode and amplify existing biases from the historical data. Existing bias mitigation algorithms often require modifying the input dataset or the learning algorithms. We posit that the prevalent dropout methods that prevent over-fitting during training by randomly dropping neurons may be an effective and less intrusive approach to improve the fairness of pre-trained DNNs. However, finding the ideal set of neurons to drop is a combinatorial problem. We propose NeuFair, a family of post-processing randomized algorithms that mitigate unfairness in pre-trained DNNs via dropouts during inference after training. Our randomized search is guided by an objective to minimize discrimination while maintaining the model's utility. We show that our design of randomized algorithms is effective and efficient in improving fairness (up to 69%) with minimal or no model performance degradation. We provide intuitive explanations of these phenomena and carefully examine the influence of various hyperparameters of search algorithms on the results. Finally, we empirically and conceptually compare NeuFair to different state-of-the-art bias mitigators.
Related papers
- Rethinking Deep Learning: Propagating Information in Neural Networks without Backpropagation and Statistical Optimization [0.0]
This study discusses the information propagation capabilities and potential practical applications of NNs as neural system mimicking structures.
In this study, the NNs architecture comprises fully connected layers using step functions as activation functions, with 0-15 hidden layers, and no weight updates.
The accuracy is calculated by comparing the average output vectors of the training data for each label with the output vectors of the test data, based on vector similarity.
arXiv Detail & Related papers (2024-08-18T09:22:24Z) - The Unreasonable Effectiveness of Solving Inverse Problems with Neural Networks [24.766470360665647]
We show that neural networks trained to learn solutions to inverse problems can find better solutions than classicals even on their training set.
Our findings suggest an alternative use for neural networks: rather than generalizing to new data for fast inference, they can also be used to find better solutions on known data.
arXiv Detail & Related papers (2024-08-15T12:38:10Z) - SGD method for entropy error function with smoothing l0 regularization for neural networks [3.108634881604788]
entropy error function has been widely used in neural networks.
We propose a novel entropy function with smoothing l0 regularization for feed-forward neural networks.
Our work is novel as it enables neural networks to learn effectively, producing more accurate predictions.
arXiv Detail & Related papers (2024-05-28T19:54:26Z) - Fast Model Debias with Machine Unlearning [54.32026474971696]
Deep neural networks might behave in a biased manner in many real-world scenarios.
Existing debiasing methods suffer from high costs in bias labeling or model re-training.
We propose a fast model debiasing framework (FMD) which offers an efficient approach to identify, evaluate and remove biases.
arXiv Detail & Related papers (2023-10-19T08:10:57Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
neural network predictions tend to be unpredictable and overconfident when faced with out-of-distribution (OOD) inputs.
We observe that neural network predictions often tend towards a constant value as input data becomes increasingly OOD.
We show how one can leverage our insights in practice to enable risk-sensitive decision-making in the presence of OOD inputs.
arXiv Detail & Related papers (2023-10-02T03:25:32Z) - Adversarial training with informed data selection [53.19381941131439]
Adrial training is the most efficient solution to defend the network against these malicious attacks.
This work proposes a data selection strategy to be applied in the mini-batch training.
The simulation results show that a good compromise can be obtained regarding robustness and standard accuracy.
arXiv Detail & Related papers (2023-01-07T12:09:50Z) - FairNeuron: Improving Deep Neural Network Fairness with Adversary Games
on Selective Neurons [22.132637957776833]
We propose FairNeuron, a model automatic repairing tool, to mitigate fairness concerns and balance the accuracy-fairness trade-off.
Our approach is lightweight, making it scalable and more efficient.
Our evaluation on 3 shows that FairNeuron can effectively improve all models' fairness while maintaining a stable utility.
arXiv Detail & Related papers (2022-04-06T03:51:32Z) - Neuron-Specific Dropout: A Deterministic Regularization Technique to
Prevent Neural Networks from Overfitting & Reduce Dependence on Large
Training Samples [0.0]
NSDropout looks at both the training pass, and validation pass, of a layer in a model.
By comparing the average values produced by each neuron for each class in a data set, the network is able to drop targeted units.
The layer is able to predict what features, or noise, the model is looking at during testing that isn't present when looking at samples from validation.
arXiv Detail & Related papers (2022-01-13T13:10:30Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
Spiking neural networks (SNNs) are brain-inspired models that enable energy-efficient implementation on neuromorphic hardware.
Most existing methods imitate the backpropagation framework and feedforward architectures for artificial neural networks.
We propose a novel training method that does not rely on the exact reverse of the forward computation.
arXiv Detail & Related papers (2021-09-29T07:46:54Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Online Limited Memory Neural-Linear Bandits with Likelihood Matching [53.18698496031658]
We study neural-linear bandits for solving problems where both exploration and representation learning play an important role.
We propose a likelihood matching algorithm that is resilient to catastrophic forgetting and is completely online.
arXiv Detail & Related papers (2021-02-07T14:19:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.