Fair Federated Data Clustering through Personalization: Bridging the Gap between Diverse Data Distributions
- URL: http://arxiv.org/abs/2407.04302v2
- Date: Fri, 12 Jul 2024 08:35:33 GMT
- Title: Fair Federated Data Clustering through Personalization: Bridging the Gap between Diverse Data Distributions
- Authors: Shivam Gupta, Tarushi, Tsering Wangzes, Shweta Jain,
- Abstract summary: We introduce the idea of personalization in federated clustering. The goal is achieve balance between achieving lower clustering cost and at same time achieving uniform cost across clients.
We propose p-FClus that addresses these goal in a single round of communication between server and clients.
- Score: 2.7905216619150344
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid growth of data from edge devices has catalyzed the performance of machine learning algorithms. However, the data generated resides at client devices thus there are majorly two challenge faced by traditional machine learning paradigms - centralization of data for training and secondly for most the generated data the class labels are missing and there is very poor incentives to clients to manually label their data owing to high cost and lack of expertise. To overcome these issues, there have been initial attempts to handle unlabelled data in a privacy preserving distributed manner using unsupervised federated data clustering. The goal is partition the data available on clients into $k$ partitions (called clusters) without actual exchange of data. Most of the existing algorithms are highly dependent on data distribution patterns across clients or are computationally expensive. Furthermore, due to presence of skewed nature of data across clients in most of practical scenarios existing models might result in clients suffering high clustering cost making them reluctant to participate in federated process. To this, we are first to introduce the idea of personalization in federated clustering. The goal is achieve balance between achieving lower clustering cost and at same time achieving uniform cost across clients. We propose p-FClus that addresses these goal in a single round of communication between server and clients. We validate the efficacy of p-FClus against variety of federated datasets showcasing it's data independence nature, applicability to any finite $\ell$-norm, while simultaneously achieving lower cost and variance.
Related papers
- Personalized federated learning based on feature fusion [2.943623084019036]
Federated learning enables distributed clients to collaborate on training while storing their data locally to protect client privacy.
We propose a personalized federated learning approach called pFedPM.
In our process, we replace traditional gradient uploading with feature uploading, which helps reduce communication costs and allows for heterogeneous client models.
arXiv Detail & Related papers (2024-06-24T12:16:51Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - Personalized Federated Learning with Attention-based Client Selection [57.71009302168411]
We propose FedACS, a new PFL algorithm with an Attention-based Client Selection mechanism.
FedACS integrates an attention mechanism to enhance collaboration among clients with similar data distributions.
Experiments on CIFAR10 and FMNIST validate FedACS's superiority.
arXiv Detail & Related papers (2023-12-23T03:31:46Z) - DCFL: Non-IID awareness Data Condensation aided Federated Learning [0.8158530638728501]
Federated learning is a decentralized learning paradigm wherein a central server trains a global model iteratively by utilizing clients who possess a certain amount of private datasets.
The challenge lies in the fact that the client side private data may not be identically and independently distributed.
We propose DCFL which divides clients into groups by using the Centered Kernel Alignment (CKA) method, then uses dataset condensation methods with non-IID awareness to complete clients.
arXiv Detail & Related papers (2023-12-21T13:04:24Z) - CADIS: Handling Cluster-skewed Non-IID Data in Federated Learning with
Clustered Aggregation and Knowledge DIStilled Regularization [3.3711670942444014]
Federated learning enables edge devices to train a global model collaboratively without exposing their data.
We tackle a new type of Non-IID data, called cluster-skewed non-IID, discovered in actual data sets.
We propose an aggregation scheme that guarantees equality between clusters.
arXiv Detail & Related papers (2023-02-21T02:53:37Z) - Rethinking Data Heterogeneity in Federated Learning: Introducing a New
Notion and Standard Benchmarks [65.34113135080105]
We show that not only the issue of data heterogeneity in current setups is not necessarily a problem but also in fact it can be beneficial for the FL participants.
Our observations are intuitive.
Our code is available at https://github.com/MMorafah/FL-SC-NIID.
arXiv Detail & Related papers (2022-09-30T17:15:19Z) - Efficient Distribution Similarity Identification in Clustered Federated
Learning via Principal Angles Between Client Data Subspaces [59.33965805898736]
Clustered learning has been shown to produce promising results by grouping clients into clusters.
Existing FL algorithms are essentially trying to group clients together with similar distributions.
Prior FL algorithms attempt similarities indirectly during training.
arXiv Detail & Related papers (2022-09-21T17:37:54Z) - Federated learning with incremental clustering for heterogeneous data [0.0]
In previous approaches, in order to cluster clients the server requires clients to send their parameters simultaneously.
We propose FLIC (Federated Learning with Incremental Clustering) in which the server exploits the updates sent by clients during federated training instead of asking them to send their parameters simultaneously.
We empirically demonstrate for various non-IID cases that our approach successfully splits clients into groups following the same data distributions.
arXiv Detail & Related papers (2022-06-17T13:13:03Z) - Federated Multi-Target Domain Adaptation [99.93375364579484]
Federated learning methods enable us to train machine learning models on distributed user data while preserving its privacy.
We consider a more practical scenario where the distributed client data is unlabeled, and a centralized labeled dataset is available on the server.
We propose an effective DualAdapt method to address the new challenges.
arXiv Detail & Related papers (2021-08-17T17:53:05Z) - Federated Learning with Taskonomy for Non-IID Data [0.0]
We introduce federated learning with taskonomy.
In a one-off process, the server provides the clients with a pretrained (and fine-tunable) encoder to compress their data into a latent representation, and transmit the signature of their data back to the server.
The server then learns the task-relatedness among clients via manifold learning, and performs a generalization of federated averaging.
arXiv Detail & Related papers (2021-03-29T20:47:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.