Understanding the Role of Invariance in Transfer Learning
- URL: http://arxiv.org/abs/2407.04325v1
- Date: Fri, 5 Jul 2024 07:53:52 GMT
- Title: Understanding the Role of Invariance in Transfer Learning
- Authors: Till Speicher, Vedant Nanda, Krishna P. Gummadi,
- Abstract summary: Transfer learning is a powerful technique for knowledge-sharing between different tasks.
Recent work has found that the representations of models with certain invariances, such as to adversarial input perturbations, achieve higher performance on downstream tasks.
- Score: 9.220104991339104
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transfer learning is a powerful technique for knowledge-sharing between different tasks. Recent work has found that the representations of models with certain invariances, such as to adversarial input perturbations, achieve higher performance on downstream tasks. These findings suggest that invariance may be an important property in the context of transfer learning. However, the relationship of invariance with transfer performance is not fully understood yet and a number of questions remain. For instance, how important is invariance compared to other factors of the pretraining task? How transferable is learned invariance? In this work, we systematically investigate the importance of representational invariance for transfer learning, as well as how it interacts with other parameters during pretraining. To do so, we introduce a family of synthetic datasets that allow us to precisely control factors of variation both in training and test data. Using these datasets, we a) show that for learning representations with high transfer performance, invariance to the right transformations is as, or often more, important than most other factors such as the number of training samples, the model architecture and the identity of the pretraining classes, b) show conditions under which invariance can harm the ability to transfer representations and c) explore how transferable invariance is between tasks. The code is available at \url{https://github.com/tillspeicher/representation-invariance-transfer}.
Related papers
- MT-SLVR: Multi-Task Self-Supervised Learning for Transformation
In(Variant) Representations [2.94944680995069]
We propose a multi-task self-supervised framework (MT-SLVR) that learns both variant and invariant features in a parameter-efficient manner.
We evaluate our approach on few-shot classification tasks drawn from a variety of audio domains and demonstrate improved classification performance.
arXiv Detail & Related papers (2023-05-29T09:10:50Z) - Amortised Invariance Learning for Contrastive Self-Supervision [11.042648980854485]
We introduce the notion of amortised invariance learning for contrastive self supervision.
We show that our amortised features provide a reliable way to learn diverse downstream tasks with different invariance requirements.
This provides an exciting perspective that opens up new horizons in the field of general purpose representation learning.
arXiv Detail & Related papers (2023-02-24T16:15:11Z) - EquiMod: An Equivariance Module to Improve Self-Supervised Learning [77.34726150561087]
Self-supervised visual representation methods are closing the gap with supervised learning performance.
These methods rely on maximizing the similarity between embeddings of related synthetic inputs created through data augmentations.
We introduce EquiMod a generic equivariance module that structures the learned latent space.
arXiv Detail & Related papers (2022-11-02T16:25:54Z) - The Lie Derivative for Measuring Learned Equivariance [84.29366874540217]
We study the equivariance properties of hundreds of pretrained models, spanning CNNs, transformers, and Mixer architectures.
We find that many violations of equivariance can be linked to spatial aliasing in ubiquitous network layers, such as pointwise non-linearities.
For example, transformers can be more equivariant than convolutional neural networks after training.
arXiv Detail & Related papers (2022-10-06T15:20:55Z) - Do Deep Networks Transfer Invariances Across Classes? [123.84237389985236]
We show how a generative approach for learning the nuisance transformations can help transfer invariances across classes.
Our results provide one explanation for why classifiers generalize poorly on unbalanced and longtailed distributions.
arXiv Detail & Related papers (2022-03-18T04:38:18Z) - Why Do Self-Supervised Models Transfer? Investigating the Impact of
Invariance on Downstream Tasks [79.13089902898848]
Self-supervised learning is a powerful paradigm for representation learning on unlabelled images.
We show that different tasks in computer vision require features to encode different (in)variances.
arXiv Detail & Related papers (2021-11-22T18:16:35Z) - Grounding inductive biases in natural images:invariance stems from
variations in data [20.432568247732206]
We study the factors of variation in a real dataset, ImageNet.
We show standard augmentation relies on a precise combination of translation and scale.
We find that the main factors of variation in ImageNet mostly relate to appearance.
arXiv Detail & Related papers (2021-06-09T14:58:57Z) - What is being transferred in transfer learning? [51.6991244438545]
We show that when training from pre-trained weights, the model stays in the same basin in the loss landscape.
We present that when training from pre-trained weights, the model stays in the same basin in the loss landscape and different instances of such model are similar in feature space and close in parameter space.
arXiv Detail & Related papers (2020-08-26T17:23:40Z) - What Should Not Be Contrastive in Contrastive Learning [110.14159883496859]
We introduce a contrastive learning framework which does not require prior knowledge of specific, task-dependent invariances.
Our model learns to capture varying and invariant factors for visual representations by constructing separate embedding spaces.
We use a multi-head network with a shared backbone which captures information across each augmentation and alone outperforms all baselines on downstream tasks.
arXiv Detail & Related papers (2020-08-13T03:02:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.