Isomorphic Pruning for Vision Models
- URL: http://arxiv.org/abs/2407.04616v1
- Date: Fri, 5 Jul 2024 16:14:53 GMT
- Title: Isomorphic Pruning for Vision Models
- Authors: Gongfan Fang, Xinyin Ma, Michael Bi Mi, Xinchao Wang,
- Abstract summary: Structured pruning reduces the computational overhead of deep neural networks by removing redundant sub-structures.
We present Isomorphic Pruning, a simple approach that demonstrates effectiveness across a range of network architectures.
- Score: 56.286064975443026
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Structured pruning reduces the computational overhead of deep neural networks by removing redundant sub-structures. However, assessing the relative importance of different sub-structures remains a significant challenge, particularly in advanced vision models featuring novel mechanisms and architectures like self-attention, depth-wise convolutions, or residual connections. These heterogeneous substructures usually exhibit diverged parameter scales, weight distributions, and computational topology, introducing considerable difficulty to importance comparison. To overcome this, we present Isomorphic Pruning, a simple approach that demonstrates effectiveness across a range of network architectures such as Vision Transformers and CNNs, and delivers competitive performance across different model sizes. Isomorphic Pruning originates from an observation that, when evaluated under a pre-defined importance criterion, heterogeneous sub-structures demonstrate significant divergence in their importance distribution, as opposed to isomorphic structures that present similar importance patterns. This inspires us to perform isolated ranking and comparison on different types of sub-structures for more reliable pruning. Our empirical results on ImageNet-1K demonstrate that Isomorphic Pruning surpasses several pruning baselines dedicatedly designed for Transformers or CNNs. For instance, we improve the accuracy of DeiT-Tiny from 74.52% to 77.50% by pruning an off-the-shelf DeiT-Base model. And for ConvNext-Tiny, we enhanced performance from 82.06% to 82.18%, while reducing the number of parameters and memory usage. Code is available at \url{https://github.com/VainF/Isomorphic-Pruning}.
Related papers
- Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - DepGraph: Towards Any Structural Pruning [68.40343338847664]
We study general structural pruning of arbitrary architecture like CNNs, RNNs, GNNs and Transformers.
We propose a general and fully automatic method, emphDependency Graph (DepGraph), to explicitly model the dependency between layers and comprehensively group parameters for pruning.
In this work, we extensively evaluate our method on several architectures and tasks, including ResNe(X)t, DenseNet, MobileNet and Vision transformer for images, GAT for graph, DGCNN for 3D point cloud, alongside LSTM for language, and demonstrate that, even with a
arXiv Detail & Related papers (2023-01-30T14:02:33Z) - "Understanding Robustness Lottery": A Geometric Visual Comparative
Analysis of Neural Network Pruning Approaches [29.048660060344574]
This work aims to shed light on how different pruning methods alter the network's internal feature representation and the corresponding impact on model performance.
We introduce a visual geometric analysis of feature representations to compare and highlight the impact of pruning on model performance and feature representation.
The proposed tool provides an environment for in-depth comparison of pruning methods and a comprehensive understanding of how model response to common data corruption.
arXiv Detail & Related papers (2022-06-16T04:44:13Z) - Latent Network Embedding via Adversarial Auto-encoders [15.656374849760734]
We propose a latent network embedding model based on adversarial graph auto-encoders.
Under this framework, the problem of discovering latent structures is formulated as inferring the latent ties from partial observations.
arXiv Detail & Related papers (2021-09-30T16:49:46Z) - Reframing Neural Networks: Deep Structure in Overcomplete
Representations [41.84502123663809]
We introduce deep frame approximation, a unifying framework for representation learning with structured overcomplete frames.
We quantify structural differences with the deep frame potential, a data-independent measure of coherence linked to representation uniqueness and stability.
This connection to the established theory of overcomplete representations suggests promising new directions for principled deep network architecture design.
arXiv Detail & Related papers (2021-03-10T01:15:14Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - ACDC: Weight Sharing in Atom-Coefficient Decomposed Convolution [57.635467829558664]
We introduce a structural regularization across convolutional kernels in a CNN.
We show that CNNs now maintain performance with dramatic reduction in parameters and computations.
arXiv Detail & Related papers (2020-09-04T20:41:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.