The Physics of Learning: From Autoencoders to Truly Autonomous Learning Machines
- URL: http://arxiv.org/abs/2407.04700v1
- Date: Mon, 12 Feb 2024 01:36:26 GMT
- Title: The Physics of Learning: From Autoencoders to Truly Autonomous Learning Machines
- Authors: Alex Ushveridze,
- Abstract summary: We propose that any unsupervised learning apparatus could achieve complete independence from external energy sources.
By reconceptualizing learning as an energy-seeking process, we highlight the potential for achieving true autonomy in learning systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The fact that accurately predicted information can serve as an energy source paves the way for new approaches to autonomous learning. The energy derived from a sequence of successful predictions can be recycled as an immediate incentive and resource, driving the enhancement of predictive capabilities in AI agents. We propose that, through a series of straightforward meta-architectural adjustments, any unsupervised learning apparatus could achieve complete independence from external energy sources, evolving into a self-sustaining physical system with a strong intrinsic 'drive' for continual learning. This concept, while still purely theoretical, is exemplified through the autoencoder, a quintessential model for unsupervised efficient coding. We use this model to demonstrate how progressive paradigm shifts can profoundly alter our comprehension of learning and intelligence. By reconceptualizing learning as an energy-seeking process, we highlight the potential for achieving true autonomy in learning systems, thereby bridging the gap between algorithmic concepts and physical models of intelligence.
Related papers
- Understanding Machine Learning Paradigms through the Lens of Statistical Thermodynamics: A tutorial [0.0]
The tutorial delves into advanced techniques like entropy, free energy, and variational inference which are utilized in machine learning.
We show how an in-depth comprehension of physical systems' behavior can yield more effective and dependable machine learning models.
arXiv Detail & Related papers (2024-11-24T18:20:05Z) - Imperative Learning: A Self-supervised Neural-Symbolic Learning Framework for Robot Autonomy [31.818923556912495]
We introduce a new self-supervised neural-symbolic (NeSy) computational framework, imperative learning (IL) for robot autonomy.
We formulate IL as a special bilevel optimization (BLO) which enables reciprocal learning over the three modules.
We show that IL can significantly enhance robot autonomy capabilities and we anticipate that it will catalyze further research across diverse domains.
arXiv Detail & Related papers (2024-06-23T12:02:17Z) - LLM4Drive: A Survey of Large Language Models for Autonomous Driving [62.10344445241105]
Large language models (LLMs) have demonstrated abilities including understanding context, logical reasoning, and generating answers.
In this paper, we systematically review a research line about textitLarge Language Models for Autonomous Driving (LLM4AD).
arXiv Detail & Related papers (2023-11-02T07:23:33Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.
PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - Stabilizing Contrastive RL: Techniques for Robotic Goal Reaching from
Offline Data [101.43350024175157]
Self-supervised learning has the potential to decrease the amount of human annotation and engineering effort required to learn control strategies.
Our work builds on prior work showing that the reinforcement learning (RL) itself can be cast as a self-supervised problem.
We demonstrate that a self-supervised RL algorithm based on contrastive learning can solve real-world, image-based robotic manipulation tasks.
arXiv Detail & Related papers (2023-06-06T01:36:56Z) - KARNet: Kalman Filter Augmented Recurrent Neural Network for Learning
World Models in Autonomous Driving Tasks [11.489187712465325]
We present a Kalman filter augmented recurrent neural network architecture to learn the latent representation of the traffic flow using front camera images only.
Results show that incorporating an explicit model of the vehicle (states estimated using Kalman filtering) in the end-to-end learning significantly increases performance.
arXiv Detail & Related papers (2023-05-24T02:27:34Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
This work presents a cognitive agent that can learn procedures incrementally.
We show the cognitive functions required in each substage and how adding new functions helps address tasks previously unsolved by the agent.
Results show that this approach is capable of solving complex tasks incrementally.
arXiv Detail & Related papers (2023-04-30T22:51:31Z) - The least-control principle for learning at equilibrium [65.2998274413952]
We present a new principle for learning equilibrium recurrent neural networks, deep equilibrium models, or meta-learning.
Our results shed light on how the brain might learn and offer new ways of approaching a broad class of machine learning problems.
arXiv Detail & Related papers (2022-07-04T11:27:08Z) - An Initial Look at Self-Reprogramming Artificial Intelligence [0.0]
We develop and experimentally validate the first fully self-reprogramming AI system.
Applying AI-based computer code generation to AI itself, we implement an algorithm with the ability to continuously modify and rewrite its own neural network source code.
arXiv Detail & Related papers (2022-04-30T05:44:34Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
We propose a computational framework for learning action-driven generative models without backpropagation of errors (backprop) in dynamic environments.
We develop an intelligent agent that operates even with sparse rewards, drawing inspiration from the cognitive theory of planning as inference.
The robust performance of our agent offers promising evidence that a backprop-free approach for neural inference and learning can drive goal-directed behavior.
arXiv Detail & Related papers (2021-07-10T19:02:27Z) - A Metamodel and Framework for Artificial General Intelligence From
Theory to Practice [11.756425327193426]
This paper introduces a new metamodel-based knowledge representation that significantly improves autonomous learning and adaptation.
We have applied the metamodel to problems ranging from time series analysis, computer vision, and natural language understanding.
One surprising consequence of the metamodel is that it not only enables a new level of autonomous learning and optimal functioning for machine intelligences.
arXiv Detail & Related papers (2021-02-11T16:45:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.