Classical and Quantum Physical Reservoir Computing for Onboard Artificial Intelligence Systems: A Perspective
- URL: http://arxiv.org/abs/2407.04717v1
- Date: Fri, 14 Jun 2024 06:55:09 GMT
- Title: Classical and Quantum Physical Reservoir Computing for Onboard Artificial Intelligence Systems: A Perspective
- Authors: A. H. Abbas, Hend Abdel-Ghani, Ivan S. Maksymov,
- Abstract summary: We discuss the perspectives of development of onboard neuromorphic computers that mimic the operation of a biological brain.
Quantum neuromorphic processors (QNPs) can conduct computations with the efficiency of a standard computer while consuming less than 1% of the onboard battery power.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial intelligence (AI) systems of autonomous systems such as drones, robots and self-driving cars may consume up to 50% of total power available onboard, thereby limiting the vehicle's range of functions and considerably reducing the distance the vehicle can travel on a single charge. Next-generation onboard AI systems need an even higher power since they collect and process even larger amounts of data in real time. This problem cannot be solved using the traditional computing devices since they become more and more power-consuming. In this review article, we discuss the perspectives of development of onboard neuromorphic computers that mimic the operation of a biological brain using nonlinear-dynamical properties of natural physical environments surrounding autonomous vehicles. Previous research also demonstrated that quantum neuromorphic processors (QNPs) can conduct computations with the efficiency of a standard computer while consuming less than 1% of the onboard battery power. Since QNPs is a semi-classical technology, their technical simplicity and low, compared with quantum computers, cost make them ideally suitable for application in autonomous AI system. Providing a perspective view on the future progress in unconventional physical reservoir computing and surveying the outcomes of more than 200 interdisciplinary research works, this article will be of interest to a broad readership, including both students and experts in the fields of physics, engineering, quantum technologies and computing.
Related papers
- LLM4Drive: A Survey of Large Language Models for Autonomous Driving [62.10344445241105]
Large language models (LLMs) have demonstrated abilities including understanding context, logical reasoning, and generating answers.
In this paper, we systematically review a research line about textitLarge Language Models for Autonomous Driving (LLM4AD).
arXiv Detail & Related papers (2023-11-02T07:23:33Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.
PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - The Two Faces of AI in Green Mobile Computing: A Literature Review [2.6763498831034034]
We present a review of the literature of the past decade on the usage of artificial intelligence within the realm of green mobile computing.
From the analysis of 34 papers, we highlight the emerging patterns and map the field into 13 main topics that are summarized in details.
arXiv Detail & Related papers (2023-07-21T15:18:10Z) - Reliable AI: Does the Next Generation Require Quantum Computing? [71.84486326350338]
We show that digital hardware is inherently constrained in solving problems about optimization, deep learning, or differential equations.
In contrast, analog computing models, such as the Blum-Shub-Smale machine, exhibit the potential to surmount these limitations.
arXiv Detail & Related papers (2023-07-03T19:10:45Z) - Physical Computing for Materials Acceleration Platforms [81.09376948478891]
We argue that the same simulation and AI tools that will accelerate the search for new materials, as part of the MAPs research program, also make possible the design of fundamentally new computing mediums.
We outline a simulation-based MAP program to design computers that use physics itself to solve optimization problems.
We expect to introduce a new era of innovative collaboration between materials researchers and computer scientists.
arXiv Detail & Related papers (2022-08-17T23:03:54Z) - Neuromorphic Artificial Intelligence Systems [58.1806704582023]
Modern AI systems, based on von Neumann architecture and classical neural networks, have a number of fundamental limitations in comparison with the brain.
This article discusses such limitations and the ways they can be mitigated.
It presents an overview of currently available neuromorphic AI projects in which these limitations are overcome.
arXiv Detail & Related papers (2022-05-25T20:16:05Z) - Next Wave Artificial Intelligence: Robust, Explainable, Adaptable,
Ethical, and Accountable [5.4138734778206]
Deep neural networks have led to many successes and new capabilities in computer vision, speech recognition, language processing, game-playing, and robotics.
A concerning limitation is that even the most successful of today's AI systems suffer from brittleness.
AI systems also can absorb biases-based on gender, race, or other factors-from their training data and further magnify these biases in their subsequent decision-making.
arXiv Detail & Related papers (2020-12-11T00:50:09Z) - Photonics for artificial intelligence and neuromorphic computing [52.77024349608834]
Photonic integrated circuits have enabled ultrafast artificial neural networks.
Photonic neuromorphic systems offer sub-nanosecond latencies.
These systems could address the growing demand for machine learning and artificial intelligence.
arXiv Detail & Related papers (2020-10-30T21:41:44Z) - On the spatiotemporal behavior in biology-mimicking computing systems [0.0]
The payload performance of conventional computing systems, from single processors to supercomputers, reached its limits the nature enables.
Both the growing demand to cope with "big data" (based on, or assisted by, artificial intelligence) and the interest in understanding the operation of our brain more completely, stimulated the efforts to build biology-mimicking computing systems.
These systems require an unusually large number of processors, which introduces performance limitations and nonlinear scaling.
arXiv Detail & Related papers (2020-09-18T13:53:58Z) - Memristors -- from In-memory computing, Deep Learning Acceleration,
Spiking Neural Networks, to the Future of Neuromorphic and Bio-inspired
Computing [25.16076541420544]
Machine learning, particularly in the form of deep learning, has driven most of the recent fundamental developments in artificial intelligence.
Deep learning has been successfully applied in areas such as object/pattern recognition, speech and natural language processing, self-driving vehicles, intelligent self-diagnostics tools, autonomous robots, knowledgeable personal assistants, and monitoring.
This paper reviews the case for a novel beyond CMOS hardware technology, memristors, as a potential solution for the implementation of power-efficient in-memory computing, deep learning accelerators, and spiking neural networks.
arXiv Detail & Related papers (2020-04-30T16:49:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.