NADI 2024: The Fifth Nuanced Arabic Dialect Identification Shared Task
- URL: http://arxiv.org/abs/2407.04910v1
- Date: Sat, 6 Jul 2024 01:18:58 GMT
- Title: NADI 2024: The Fifth Nuanced Arabic Dialect Identification Shared Task
- Authors: Muhammad Abdul-Mageed, Amr Keleg, AbdelRahim Elmadany, Chiyu Zhang, Injy Hamed, Walid Magdy, Houda Bouamor, Nizar Habash,
- Abstract summary: We describe the findings of the fifth Nuanced Arabic Dialect Identification Shared Task (NADI 2024)
NADI 2024 targeted both dialect identification cast as a multi-label task and identification of the Arabic level of dialectness.
Winning teams achieved 50.57 Ftextsubscript1 on Subtask1, 0.1403 RMSE for Subtask2, and 20.44 BLEU in Subtask3, respectively.
- Score: 28.40134178913119
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We describe the findings of the fifth Nuanced Arabic Dialect Identification Shared Task (NADI 2024). NADI's objective is to help advance SoTA Arabic NLP by providing guidance, datasets, modeling opportunities, and standardized evaluation conditions that allow researchers to collaboratively compete on pre-specified tasks. NADI 2024 targeted both dialect identification cast as a multi-label task (Subtask~1), identification of the Arabic level of dialectness (Subtask~2), and dialect-to-MSA machine translation (Subtask~3). A total of 51 unique teams registered for the shared task, of whom 12 teams have participated (with 76 valid submissions during the test phase). Among these, three teams participated in Subtask~1, three in Subtask~2, and eight in Subtask~3. The winning teams achieved 50.57 F\textsubscript{1} on Subtask~1, 0.1403 RMSE for Subtask~2, and 20.44 BLEU in Subtask~3, respectively. Results show that Arabic dialect processing tasks such as dialect identification and machine translation remain challenging. We describe the methods employed by the participating teams and briefly offer an outlook for NADI.
Related papers
- SemEval-2024 Task 8: Multidomain, Multimodel and Multilingual Machine-Generated Text Detection [68.858931667807]
Subtask A is a binary classification task determining whether a text is written by a human or generated by a machine.
Subtask B is to detect the exact source of a text, discerning whether it is written by a human or generated by a specific LLM.
Subtask C aims to identify the changing point within a text, at which the authorship transitions from human to machine.
arXiv Detail & Related papers (2024-04-22T13:56:07Z) - SemEval-2024 Shared Task 6: SHROOM, a Shared-task on Hallucinations and Related Observable Overgeneration Mistakes [48.83290963506378]
This paper presents the results of the SHROOM, a shared task focused on detecting hallucinations.
We observe a number of key trends in how this approach was tackled.
While a majority of the teams did outperform our proposed baseline system, the performances of top-scoring systems are still consistent with a random handling of the more challenging items.
arXiv Detail & Related papers (2024-03-12T15:06:22Z) - SemEval 2024 -- Task 10: Emotion Discovery and Reasoning its Flip in
Conversation (EDiReF) [61.49972925493912]
SemEval-2024 Task 10 is a shared task centred on identifying emotions in code-mixed dialogues.
This task comprises three distinct subtasks - emotion recognition in conversation for code-mixed dialogues, emotion flip reasoning for code-mixed dialogues, and emotion flip reasoning for English dialogues.
A total of 84 participants engaged in this task, with the most adept systems attaining F1-scores of 0.70, 0.79, and 0.76 for the respective subtasks.
arXiv Detail & Related papers (2024-02-29T08:20:06Z) - ArabicMMLU: Assessing Massive Multitask Language Understanding in Arabic [51.922112625469836]
We present datasetname, the first multi-task language understanding benchmark for the Arabic language.
Our data comprises 40 tasks and 14,575 multiple-choice questions in Modern Standard Arabic (MSA) and is carefully constructed by collaborating with native speakers in the region.
Our evaluations of 35 models reveal substantial room for improvement, particularly among the best open-source models.
arXiv Detail & Related papers (2024-02-20T09:07:41Z) - ArAIEval Shared Task: Persuasion Techniques and Disinformation Detection
in Arabic Text [41.3267575540348]
We present an overview of the ArAIEval shared task, organized as part of the first Arabic 2023 conference co-located with EMNLP 2023.
ArAIEval offers two tasks over Arabic text: (i) persuasion technique detection, focusing on identifying persuasion techniques in tweets and news articles, and (ii) disinformation detection in binary and multiclass setups over tweets.
A total of 20 teams participated in the final evaluation phase, with 14 and 16 teams participating in Tasks 1 and 2, respectively.
arXiv Detail & Related papers (2023-11-06T15:21:19Z) - NADI 2023: The Fourth Nuanced Arabic Dialect Identification Shared Task [28.986040897360336]
We describe the findings of the fourth Nuanced Arabic Dialect Identification Shared Task (NADI 2023)
NADI 2023 targeted both dialect identification (Subtask 1) and dialect-to-MSA machine translation (Subtask 2 and Subtask 3).
We describe the methods employed by the participating teams and briefly offer an outlook for NADI.
arXiv Detail & Related papers (2023-10-24T18:41:24Z) - Findings of the WMT 2022 Shared Task on Translation Suggestion [63.457874930232926]
We report the result of the first edition of the WMT shared task on Translation Suggestion.
The task aims to provide alternatives for specific words or phrases given the entire documents generated by machine translation (MT)
It consists two sub-tasks, namely, the naive translation suggestion and translation suggestion with hints.
arXiv Detail & Related papers (2022-11-30T03:48:36Z) - NADI 2022: The Third Nuanced Arabic Dialect Identification Shared Task [16.688997360734472]
Third Nuanced Arabic Dialect Identification Shared Task (NADI 2022)
NADI 2022 targeted both dialect identification (Subtask 1) and dialectal sentiment analysis (Subtask 2) at the country level.
Winning team achieved 27.06 F1 on Subtask 1 and F1=75.16 on Subtask 2.
arXiv Detail & Related papers (2022-10-18T04:31:05Z) - NADI 2021: The Second Nuanced Arabic Dialect Identification Shared Task [20.34810224205086]
This Shared Task includes four subtasks: country-level Modern Standard Arabic (MSA) identification (Subtask 1.1), country-level dialect identification (Subtask 1.2), and province-level sub-dialect identification (Subtask 2.1)
The dataset covers a total of 100 provinces from 21 Arab countries, collected from the Twitter domain.
A total of 53 teams from 23 countries registered to participate in the tasks, thus reflecting the interest of the community in this area.
arXiv Detail & Related papers (2021-03-04T04:59:37Z) - Dialect Identification in Nuanced Arabic Tweets Using Farasa
Segmentation and AraBERT [0.0]
This paper presents our approach to address the EACL WANLP-2021 Shared Task 1: Nuanced Arabic Dialect Identification (NADI)
The task is aimed at developing a system that identifies the geographical location(country/province) from where an Arabic tweet in the form of modern standard Arabic or dialect comes from.
arXiv Detail & Related papers (2021-02-19T05:39:21Z) - NADI 2020: The First Nuanced Arabic Dialect Identification Shared Task [18.23153068720659]
We present the results and findings of the First Nuanced Arabic Dialect Identification Shared Task (NADI)
Data for the shared task covers a total of 100 provinces from 21 Arab countries and are collected from the Twitter domain.
NADI is the first shared task to target naturally-occurring fine-grained dialectal text at the sub-country level.
arXiv Detail & Related papers (2020-10-21T22:14:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.