Leveraging Task-Specific Knowledge from LLM for Semi-Supervised 3D Medical Image Segmentation
- URL: http://arxiv.org/abs/2407.05088v1
- Date: Sat, 6 Jul 2024 14:23:16 GMT
- Title: Leveraging Task-Specific Knowledge from LLM for Semi-Supervised 3D Medical Image Segmentation
- Authors: Suruchi Kumari, Aryan Das, Swalpa Kumar Roy, Indu Joshi, Pravendra Singh,
- Abstract summary: We introduce LLM-SegNet, which exploits a large language model (LLM) to integrate task-specific knowledge into our co-training framework.
Experiments on publicly available Left Atrium, Pancreas-CT, and Brats-19 datasets demonstrate the superior performance of LLM-SegNet compared to the state-of-the-art.
- Score: 9.778201925906913
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Traditional supervised 3D medical image segmentation models need voxel-level annotations, which require huge human effort, time, and cost. Semi-supervised learning (SSL) addresses this limitation of supervised learning by facilitating learning with a limited annotated and larger amount of unannotated training samples. However, state-of-the-art SSL models still struggle to fully exploit the potential of learning from unannotated samples. To facilitate effective learning from unannotated data, we introduce LLM-SegNet, which exploits a large language model (LLM) to integrate task-specific knowledge into our co-training framework. This knowledge aids the model in comprehensively understanding the features of the region of interest (ROI), ultimately leading to more efficient segmentation. Additionally, to further reduce erroneous segmentation, we propose a Unified Segmentation loss function. This loss function reduces erroneous segmentation by not only prioritizing regions where the model is confident in predicting between foreground or background pixels but also effectively addressing areas where the model lacks high confidence in predictions. Experiments on publicly available Left Atrium, Pancreas-CT, and Brats-19 datasets demonstrate the superior performance of LLM-SegNet compared to the state-of-the-art. Furthermore, we conducted several ablation studies to demonstrate the effectiveness of various modules and loss functions leveraged by LLM-SegNet.
Related papers
- CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives.
Inspired by our findings, we propose a measurement to quantitatively evaluate the learning balance.
In addition, we introduce an auxiliary loss regularization method to promote updating of the generation distribution of MLLMs.
arXiv Detail & Related papers (2024-07-29T23:18:55Z) - Evaluating Large Language Models for Health-Related Text Classification Tasks with Public Social Media Data [3.9459077974367833]
Large language models (LLMs) have demonstrated remarkable success in NLP tasks.
We benchmarked one supervised classic machine learning model based on Support Vector Machines (SVMs), three supervised pretrained language models (PLMs) based on RoBERTa, BERTweet, and SocBERT, and two LLM based classifiers (GPT3.5 and GPT4), across 6 text classification tasks.
Our comprehensive experiments demonstrate that employ-ing data augmentation using LLMs (GPT-4) with relatively small human-annotated data to train lightweight supervised classification models achieves superior results compared to training with human-annotated data
arXiv Detail & Related papers (2024-03-27T22:05:10Z) - Few-Shot Learning for Annotation-Efficient Nucleus Instance Segmentation [50.407071700154674]
We propose to formulate annotation-efficient nucleus instance segmentation from the perspective of few-shot learning (FSL)
Our work was motivated by that, with the prosperity of computational pathology, an increasing number of fully-annotated datasets are publicly accessible.
Extensive experiments on a couple of publicly accessible datasets demonstrate that SGFSIS can outperform other annotation-efficient learning baselines.
arXiv Detail & Related papers (2024-02-26T03:49:18Z) - Measuring Distributional Shifts in Text: The Advantage of Language
Model-Based Embeddings [11.393822909537796]
An essential part of monitoring machine learning models in production is measuring input and output data drift.
Recent advancements in large language models (LLMs) indicate their effectiveness in capturing semantic relationships.
We propose a clustering-based algorithm for measuring distributional shifts in text data by exploiting such embeddings.
arXiv Detail & Related papers (2023-12-04T20:46:48Z) - Scribble-supervised Cell Segmentation Using Multiscale Contrastive
Regularization [9.849498498869258]
Scribble2Label (S2L) demonstrated that using only a handful of scribbles with self-supervised learning can generate accurate segmentation results without full annotation.
In this work, we employ a novel multiscale contrastive regularization term for S2L.
The main idea is to extract features from intermediate layers of the neural network for contrastive loss so that structures at various scales can be effectively separated.
arXiv Detail & Related papers (2023-06-25T06:00:33Z) - Large Language Models Are Latent Variable Models: Explaining and Finding
Good Demonstrations for In-Context Learning [104.58874584354787]
In recent years, pre-trained large language models (LLMs) have demonstrated remarkable efficiency in achieving an inference-time few-shot learning capability known as in-context learning.
This study aims to examine the in-context learning phenomenon through a Bayesian lens, viewing real-world LLMs as latent variable models.
arXiv Detail & Related papers (2023-01-27T18:59:01Z) - Revisiting Distance Metric Learning for Few-Shot Natural Language
Classification [1.0323063834827415]
Under few-shot learning settings, particularly proxy-based DML losses can positively affect the fine-tuning and inference of a supervised language model.
Models tuned with a combination of CCE and ProxyAnchor Loss have, on average, the best performance and outperform models with only CCE by about 3.27 percentage points.
arXiv Detail & Related papers (2022-11-28T10:19:31Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
We propose Vicinal Labels Under Uncertainty (VLUU) to bridge the methodological gaps in partially supervised learning (PSL) under data scarcity.
Motivated by multi-task learning and vicinal risk minimization, VLUU transforms the partially supervised problem into a fully supervised problem by generating vicinal labels.
Our research suggests a new research direction in label-efficient deep learning with partial supervision.
arXiv Detail & Related papers (2020-11-28T16:31:00Z) - PGL: Prior-Guided Local Self-supervised Learning for 3D Medical Image
Segmentation [87.50205728818601]
We propose a PriorGuided Local (PGL) self-supervised model that learns the region-wise local consistency in the latent feature space.
Our PGL model learns the distinctive representations of local regions, and hence is able to retain structural information.
arXiv Detail & Related papers (2020-11-25T11:03:11Z) - Adversarial Self-Supervised Learning for Semi-Supervised 3D Action
Recognition [123.62183172631443]
We present Adversarial Self-Supervised Learning (ASSL), a novel framework that tightly couples SSL and the semi-supervised scheme.
Specifically, we design an effective SSL scheme to improve the discrimination capability of learned representations for 3D action recognition.
arXiv Detail & Related papers (2020-07-12T08:01:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.