Lucy: Think and Reason to Solve Text-to-SQL
- URL: http://arxiv.org/abs/2407.05153v1
- Date: Sat, 6 Jul 2024 18:56:42 GMT
- Title: Lucy: Think and Reason to Solve Text-to-SQL
- Authors: Nina Narodytska, Shay Vargaftik,
- Abstract summary: Large Language Models (LLMs) have made significant progress in assisting users to query databases in natural language.
LLMs provide state-of-the-art results on many standard benchmarks, but their performance significantly drops when applied to large enterprise databases.
We propose a new solution that combines the power of LLMs in understanding questions with automated reasoning techniques to handle complex database constraints.
- Score: 12.52968634440807
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have made significant progress in assisting users to query databases in natural language. While LLM-based techniques provide state-of-the-art results on many standard benchmarks, their performance significantly drops when applied to large enterprise databases. The reason is that these databases have a large number of tables with complex relationships that are challenging for LLMs to reason about. We analyze challenges that LLMs face in these settings and propose a new solution that combines the power of LLMs in understanding questions with automated reasoning techniques to handle complex database constraints. Based on these ideas, we have developed a new framework that outperforms state-of-the-art techniques in zero-shot text-to-SQL on complex benchmarks
Related papers
- PTD-SQL: Partitioning and Targeted Drilling with LLMs in Text-to-SQL [54.304872649870575]
Large Language Models (LLMs) have emerged as powerful tools for Text-to-sense tasks.
In this study, we propose that employing query group partitioning allows LLMs to focus on learning the thought processes specific to a single problem type.
arXiv Detail & Related papers (2024-09-21T09:33:14Z) - BEAVER: An Enterprise Benchmark for Text-to-SQL [6.3900786001871195]
Existing text-to-generated benchmarks have largely been constructed using publicly available tables from the web.
In this paper, we apply off-the-shelf LLMs to a benchmark containing enterprise data warehouse data.
As we will show, the reasons for poor performance are largely due to three characteristics.
arXiv Detail & Related papers (2024-09-03T16:37:45Z) - Relational Database Augmented Large Language Model [59.38841050766026]
Large language models (LLMs) excel in many natural language processing (NLP) tasks.
They can only incorporate new knowledge through training or supervised fine-tuning processes.
This precise, up-to-date, and private information is typically stored in relational databases.
arXiv Detail & Related papers (2024-07-21T06:19:10Z) - RB-SQL: A Retrieval-based LLM Framework for Text-to-SQL [48.516004807486745]
Large language models (LLMs) with in-context learning have significantly improved the performance of text-to- task.
We propose RB-, a novel retrieval-based framework for in-context prompt engineering.
Experiment results demonstrate that our model achieves better performance than several competitive baselines on public datasets BIRD and Spider.
arXiv Detail & Related papers (2024-07-11T08:19:58Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
Long-context language models (LCLMs) have the potential to revolutionize our approach to tasks traditionally reliant on external tools like retrieval systems or databases.
We introduce LOFT, a benchmark of real-world tasks requiring context up to millions of tokens designed to evaluate LCLMs' performance on in-context retrieval and reasoning.
Our findings reveal LCLMs' surprising ability to rival state-of-the-art retrieval and RAG systems, despite never having been explicitly trained for these tasks.
arXiv Detail & Related papers (2024-06-19T00:28:58Z) - Next-Generation Database Interfaces: A Survey of LLM-based Text-to-SQL [15.75829309721909]
Generating accuratesql from natural language questions (text-to-) is a long-standing challenge.
PLMs have been developed and utilized for text-to- tasks, achieving promising performance.
Recently, large language models (LLMs) have demonstrated significant capabilities in natural language understanding.
arXiv Detail & Related papers (2024-06-12T17:13:17Z) - ERBench: An Entity-Relationship based Automatically Verifiable Hallucination Benchmark for Large Language Models [46.07900122810749]
Large language models (LLMs) have achieved unprecedented performances in various applications, yet evaluating them is still challenging.
We contend that utilizing existing relational databases is a promising approach for constructing benchmarks.
We propose ERBench, which uses these integrity constraints to convert any database into an LLM benchmark.
arXiv Detail & Related papers (2024-03-08T12:42:36Z) - Text-to-SQL Empowered by Large Language Models: A Benchmark Evaluation [76.76046657162306]
Large language models (LLMs) have emerged as a new paradigm for Text-to- task.
Large language models (LLMs) have emerged as a new paradigm for Text-to- task.
arXiv Detail & Related papers (2023-08-29T14:59:54Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
This paper introduces the framework for enhancing Text-to- filtering using large language models (LLMs)
With few-shot prompting, we explore the effectiveness of consistency decoding with execution-based error analyses.
With instruction fine-tuning, we delve deep in understanding the critical paradigms that influence the performance of tuned LLMs.
arXiv Detail & Related papers (2023-05-26T21:39:05Z) - Querying Large Language Models with SQL [16.383179496709737]
In many use-cases, information is stored in text but not available in structured data.
With the rise of pre-trained Large Language Models (LLMs), there is now an effective solution to store and use information extracted from massive corpora of text documents.
We present Galois, a prototype based on a traditional database architecture, but with new physical operators for querying the underlying LLM.
arXiv Detail & Related papers (2023-04-02T06:58:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.