Tracking Reflected Objects: A Benchmark
- URL: http://arxiv.org/abs/2407.05235v1
- Date: Sun, 7 Jul 2024 02:22:45 GMT
- Title: Tracking Reflected Objects: A Benchmark
- Authors: Xiaoyu Guo, Pengzhi Zhong, Lizhi Lin, Hao Zhang, Ling Huang, Shuiwang Li,
- Abstract summary: We introduce TRO, a benchmark specifically for Tracking Reflected Objects.
TRO includes 200 sequences with around 70,000 frames, each carefully annotated with bounding boxes.
To provide a stronger baseline, we propose a new tracker, HiP-HaTrack, which uses hierarchical features to improve performance.
- Score: 12.770787846444406
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual tracking has advanced significantly in recent years, mainly due to the availability of large-scale training datasets. These datasets have enabled the development of numerous algorithms that can track objects with high accuracy and robustness.However, the majority of current research has been directed towards tracking generic objects, with less emphasis on more specialized and challenging scenarios. One such challenging scenario involves tracking reflected objects. Reflections can significantly distort the appearance of objects, creating ambiguous visual cues that complicate the tracking process. This issue is particularly pertinent in applications such as autonomous driving, security, smart homes, and industrial production, where accurately tracking objects reflected in surfaces like mirrors or glass is crucial. To address this gap, we introduce TRO, a benchmark specifically for Tracking Reflected Objects. TRO includes 200 sequences with around 70,000 frames, each carefully annotated with bounding boxes. This dataset aims to encourage the development of new, accurate methods for tracking reflected objects, which present unique challenges not sufficiently covered by existing benchmarks. We evaluated 20 state-of-the-art trackers and found that they struggle with the complexities of reflections. To provide a stronger baseline, we propose a new tracker, HiP-HaTrack, which uses hierarchical features to improve performance, significantly outperforming existing algorithms. We believe our benchmark, evaluation, and HiP-HaTrack will inspire further research and applications in tracking reflected objects. The TRO and code are available at https://github.com/OpenCodeGithub/HIP-HaTrack.
Related papers
- Camouflaged_Object_Tracking__A_Benchmark [13.001689702214573]
We introduce the Camouflaged Object Tracking dataset (COTD), a benchmark for evaluating camouflaged object tracking methods.
COTD comprises 200 sequences and approximately 80,000 frames, each annotated with detailed bounding boxes.
Our evaluation of 20 existing tracking algorithms reveals significant deficiencies in their performance with camouflaged objects.
We propose a novel tracking framework, HiPTrack-MLS, which demonstrates promising results in improving tracking performance for camouflaged objects.
arXiv Detail & Related papers (2024-08-25T15:56:33Z) - Low-Light Object Tracking: A Benchmark [9.798869093713067]
We introduce LLOT, a benchmark specifically designed for Low-Light Object Tracking.
LLOT comprises 269 challenging sequences with a total of over 132K frames, each carefully annotated with bounding boxes.
In response, we propose H-DCPT, a novel tracker that incorporates historical and darkness clue prompts to set a stronger baseline.
arXiv Detail & Related papers (2024-08-21T09:27:57Z) - Iterative Scale-Up ExpansionIoU and Deep Features Association for
Multi-Object Tracking in Sports [26.33239898091364]
We propose a novel online and robust multi-object tracking approach named deep ExpansionIoU (Deep-EIoU) for sports scenarios.
Unlike conventional methods, we abandon the use of the Kalman filter and leverage the iterative scale-up ExpansionIoU and deep features for robust tracking in sports scenarios.
Our proposed method demonstrates remarkable effectiveness in tracking irregular motion objects, achieving a score of 77.2% on the SportsMOT dataset and 85.4% on the SoccerNet-Tracking dataset.
arXiv Detail & Related papers (2023-06-22T17:47:08Z) - End-to-end Tracking with a Multi-query Transformer [96.13468602635082]
Multiple-object tracking (MOT) is a challenging task that requires simultaneous reasoning about location, appearance, and identity of the objects in the scene over time.
Our aim in this paper is to move beyond tracking-by-detection approaches, to class-agnostic tracking that performs well also for unknown object classes.
arXiv Detail & Related papers (2022-10-26T10:19:37Z) - AVisT: A Benchmark for Visual Object Tracking in Adverse Visibility [125.77396380698639]
AVisT is a benchmark for visual tracking in diverse scenarios with adverse visibility.
AVisT comprises 120 challenging sequences with 80k annotated frames, spanning 18 diverse scenarios.
We benchmark 17 popular and recent trackers on AVisT with detailed analysis of their tracking performance across attributes.
arXiv Detail & Related papers (2022-08-14T17:49:37Z) - Single Object Tracking Research: A Survey [44.24280758718638]
This paper presents the rationale and works of two most popular tracking frameworks in past ten years.
We present some deep learning based tracking methods categorized by different network structures.
We also introduce some classical strategies for handling the challenges in tracking problem.
arXiv Detail & Related papers (2022-04-25T02:59:15Z) - Learning to Track with Object Permanence [61.36492084090744]
We introduce an end-to-end trainable approach for joint object detection and tracking.
Our model, trained jointly on synthetic and real data, outperforms the state of the art on KITTI, and MOT17 datasets.
arXiv Detail & Related papers (2021-03-26T04:43:04Z) - Track to Detect and Segment: An Online Multi-Object Tracker [81.15608245513208]
TraDeS is an online joint detection and tracking model, exploiting tracking clues to assist detection end-to-end.
TraDeS infers object tracking offset by a cost volume, which is used to propagate previous object features.
arXiv Detail & Related papers (2021-03-16T02:34:06Z) - Detecting Invisible People [58.49425715635312]
We re-purpose tracking benchmarks and propose new metrics for the task of detecting invisible objects.
We demonstrate that current detection and tracking systems perform dramatically worse on this task.
Second, we build dynamic models that explicitly reason in 3D, making use of observations produced by state-of-the-art monocular depth estimation networks.
arXiv Detail & Related papers (2020-12-15T16:54:45Z) - TAO: A Large-Scale Benchmark for Tracking Any Object [95.87310116010185]
Tracking Any Object dataset consists of 2,907 high resolution videos, captured in diverse environments, which are half a minute long on average.
We ask annotators to label objects that move at any point in the video, and give names to them post factum.
Our vocabulary is both significantly larger and qualitatively different from existing tracking datasets.
arXiv Detail & Related papers (2020-05-20T21:07:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.