P2P: Part-to-Part Motion Cues Guide a Strong Tracking Framework for LiDAR Point Clouds
- URL: http://arxiv.org/abs/2407.05238v2
- Date: Tue, 9 Jul 2024 02:15:52 GMT
- Title: P2P: Part-to-Part Motion Cues Guide a Strong Tracking Framework for LiDAR Point Clouds
- Authors: Jiahao Nie, Fei Xie, Sifan Zhou, Xueyi Zhou, Dong-Kyu Chae, Zhiwei He,
- Abstract summary: 3D single object tracking methods based on appearance matching have long suffered from insufficient appearance information incurred by LiDAR point clouds.
We propose part-to-part motion modeling for consecutive point clouds and introduce a novel tracking framework, termed textbfP2P.
We present P2P-point and P2P-voxel models, incorporating implicit and explicit part-to-part motion modeling by point- and voxel-based representation, respectively.
- Score: 11.30412146387686
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D single object tracking (SOT) methods based on appearance matching has long suffered from insufficient appearance information incurred by incomplete, textureless and semantically deficient LiDAR point clouds. While motion paradigm exploits motion cues instead of appearance matching for tracking, it incurs complex multi-stage processing and segmentation module. In this paper, we first provide in-depth explorations on motion paradigm, which proves that (\textbf{i}) it is feasible to directly infer target relative motion from point clouds across consecutive frames; (\textbf{ii}) fine-grained information comparison between consecutive point clouds facilitates target motion modeling. We thereby propose to perform part-to-part motion modeling for consecutive point clouds and introduce a novel tracking framework, termed \textbf{P2P}. The novel framework fuses each corresponding part information between consecutive point clouds, effectively exploring detailed information changes and thus modeling accurate target-related motion cues. Following this framework, we present P2P-point and P2P-voxel models, incorporating implicit and explicit part-to-part motion modeling by point- and voxel-based representation, respectively. Without bells and whistles, P2P-voxel sets a new state-of-the-art performance ($\sim$\textbf{89\%}, \textbf{72\%} and \textbf{63\%} precision on KITTI, NuScenes and Waymo Open Dataset, respectively). Moreover, under the same point-based representation, P2P-point outperforms the previous motion tracker M$^2$Track by \textbf{3.3\%} and \textbf{6.7\%} on the KITTI and NuScenes, while running at a considerably high speed of \textbf{107 Fps} on a single RTX3090 GPU. The source code and pre-trained models are available at \url{https://github.com/haooozi/P2P}.
Related papers
- Online Dense Point Tracking with Streaming Memory [54.22820729477756]
Dense point tracking is a challenging task requiring the continuous tracking of every point in the initial frame throughout a substantial portion of a video.
Recent point tracking algorithms usually depend on sliding windows for indirect information propagation from the first frame to the current one.
We present a lightweight and fast model with textbfStreaming memory for dense textbfPOint textbfTracking and online video processing.
arXiv Detail & Related papers (2025-03-09T06:16:49Z) - P2P-Bridge: Diffusion Bridges for 3D Point Cloud Denoising [81.92854168911704]
We tackle the task of point cloud denoising through a novel framework that adapts Diffusion Schr"odinger bridges to points clouds.
Experiments on object datasets show that P2P-Bridge achieves significant improvements over existing methods.
arXiv Detail & Related papers (2024-08-29T08:00:07Z) - Degrees of Freedom Matter: Inferring Dynamics from Point Trajectories [28.701879490459675]
We aim to learn an implicit motion field parameterized by a neural network to predict the movement of novel points within same domain.
We exploit intrinsic regularization provided by SIREN, and modify the input layer to produce atemporally smooth motion field.
Our experiments assess the model's performance in predicting unseen point trajectories and its application in temporal mesh alignment with deformation.
arXiv Detail & Related papers (2024-06-05T21:02:10Z) - EasyTrack: Efficient and Compact One-stream 3D Point Clouds Tracker [35.74677036815288]
We propose a neat and compact one-stream transformer 3D SOT paradigm, termed as textbfEasyTrack.
A 3D point clouds tracking feature pre-training module is developed to exploit the masked autoencoding for learning 3D point clouds tracking representations.
A target location network in the dense bird's eye view (BEV) feature space is constructed for target classification and regression.
arXiv Detail & Related papers (2024-04-09T02:47:52Z) - Motion-to-Matching: A Mixed Paradigm for 3D Single Object Tracking [27.805298263103495]
We propose MTM-Tracker, which combines motion modeling with feature matching into a single network.
In the first stage, we exploit the continuous historical boxes as motion prior and propose an encoder-decoder structure to locate target coarsely.
In the second stage, we introduce a feature interaction module to extract motion-aware features from consecutive point clouds and match them to refine target movement.
arXiv Detail & Related papers (2023-08-23T02:40:51Z) - PointOdyssey: A Large-Scale Synthetic Dataset for Long-Term Point
Tracking [90.29143475328506]
We introduce PointOdyssey, a large-scale synthetic dataset, and data generation framework.
Our goal is to advance the state-of-the-art by placing emphasis on long videos with naturalistic motion.
We animate deformable characters using real-world motion capture data, we build 3D scenes to match the motion capture environments, and we render camera viewpoints using trajectories mined via structure-from-motion on real videos.
arXiv Detail & Related papers (2023-07-27T17:58:11Z) - STTracker: Spatio-Temporal Tracker for 3D Single Object Tracking [11.901758708579642]
3D single object tracking with point clouds is a critical task in 3D computer vision.
Previous methods usually input the last two frames and use the template point cloud in previous frame and the search area point cloud in the current frame respectively.
arXiv Detail & Related papers (2023-06-30T07:25:11Z) - TAPIR: Tracking Any Point with per-frame Initialization and temporal
Refinement [64.11385310305612]
We present a novel model for Tracking Any Point (TAP) that effectively tracks any queried point on any physical surface throughout a video sequence.
Our approach employs two stages: (1) a matching stage, which independently locates a suitable candidate point match for the query point on every other frame, and (2) a refinement stage, which updates both the trajectory and query features based on local correlations.
The resulting model surpasses all baseline methods by a significant margin on the TAP-Vid benchmark, as demonstrated by an approximate 20% absolute average Jaccard (AJ) improvement on DAVIS.
arXiv Detail & Related papers (2023-06-14T17:07:51Z) - Variational Relational Point Completion Network for Robust 3D
Classification [59.80993960827833]
Vari point cloud completion methods tend to generate global shape skeletons hence lack fine local details.
This paper proposes a variational framework, point Completion Network (VRCNet) with two appealing properties.
VRCNet shows great generalizability and robustness on real-world point cloud scans.
arXiv Detail & Related papers (2023-04-18T17:03:20Z) - Joint Feature Learning and Relation Modeling for Tracking: A One-Stream
Framework [76.70603443624012]
We propose a novel one-stream tracking (OSTrack) framework that unifies feature learning and relation modeling.
In this way, discriminative target-oriented features can be dynamically extracted by mutual guidance.
OSTrack achieves state-of-the-art performance on multiple benchmarks, in particular, it shows impressive results on the one-shot tracking benchmark GOT-10k.
arXiv Detail & Related papers (2022-03-22T18:37:11Z) - Lifting 2D Object Locations to 3D by Discounting LiDAR Outliers across
Objects and Views [70.1586005070678]
We present a system for automatically converting 2D mask object predictions and raw LiDAR point clouds into full 3D bounding boxes of objects.
Our method significantly outperforms previous work despite the fact that those methods use significantly more complex pipelines, 3D models and additional human-annotated external sources of prior information.
arXiv Detail & Related papers (2021-09-16T13:01:13Z) - Learning to Segment Rigid Motions from Two Frames [72.14906744113125]
We propose a modular network, motivated by a geometric analysis of what independent object motions can be recovered from an egomotion field.
It takes two consecutive frames as input and predicts segmentation masks for the background and multiple rigidly moving objects, which are then parameterized by 3D rigid transformations.
Our method achieves state-of-the-art performance for rigid motion segmentation on KITTI and Sintel.
arXiv Detail & Related papers (2021-01-11T04:20:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.