CLIMB: A Benchmark of Clinical Bias in Large Language Models
- URL: http://arxiv.org/abs/2407.05250v1
- Date: Sun, 7 Jul 2024 03:41:51 GMT
- Title: CLIMB: A Benchmark of Clinical Bias in Large Language Models
- Authors: Yubo Zhang, Shudi Hou, Mingyu Derek Ma, Wei Wang, Muhao Chen, Jieyu Zhao,
- Abstract summary: Large language models (LLMs) are increasingly applied to clinical decision-making.
Their potential to exhibit bias poses significant risks to clinical equity.
Currently, there is a lack of benchmarks that systematically evaluate such clinical bias in LLMs.
- Score: 39.82307008221118
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) are increasingly applied to clinical decision-making. However, their potential to exhibit bias poses significant risks to clinical equity. Currently, there is a lack of benchmarks that systematically evaluate such clinical bias in LLMs. While in downstream tasks, some biases of LLMs can be avoided such as by instructing the model to answer "I'm not sure...", the internal bias hidden within the model still lacks deep studies. We introduce CLIMB (shorthand for A Benchmark of Clinical Bias in Large Language Models), a pioneering comprehensive benchmark to evaluate both intrinsic (within LLMs) and extrinsic (on downstream tasks) bias in LLMs for clinical decision tasks. Notably, for intrinsic bias, we introduce a novel metric, AssocMAD, to assess the disparities of LLMs across multiple demographic groups. Additionally, we leverage counterfactual intervention to evaluate extrinsic bias in a task of clinical diagnosis prediction. Our experiments across popular and medically adapted LLMs, particularly from the Mistral and LLaMA families, unveil prevalent behaviors with both intrinsic and extrinsic bias. This work underscores the critical need to mitigate clinical bias and sets a new standard for future evaluations of LLMs' clinical bias.
Related papers
- Self-Preference Bias in LLM-as-a-Judge [13.880151307013321]
We introduce a novel metric to measure the self-preference bias in large language models (LLMs)
Our results show GPT-4 exhibits a significant degree of self-preference bias.
This suggests that the essence of the bias lies in perplexity and that the self-preference bias exists because LLMs prefer texts more familiar to them.
arXiv Detail & Related papers (2024-10-29T07:42:18Z) - How Can We Diagnose and Treat Bias in Large Language Models for Clinical Decision-Making? [2.7476176772825904]
This research investigates the evaluation and mitigation of bias in Large Language Models (LLMs)
We introduce a novel Counterfactual Patient Variations (CPV) dataset derived from the JAMA Clinical Challenge.
Using this dataset, we built a framework for bias evaluation, employing both Multiple Choice Questions (MCQs) and corresponding explanations.
arXiv Detail & Related papers (2024-10-21T23:14:10Z) - CliMedBench: A Large-Scale Chinese Benchmark for Evaluating Medical Large Language Models in Clinical Scenarios [50.032101237019205]
CliMedBench is a comprehensive benchmark with 14 expert-guided core clinical scenarios.
The reliability of this benchmark has been confirmed in several ways.
arXiv Detail & Related papers (2024-10-04T15:15:36Z) - Justice or Prejudice? Quantifying Biases in LLM-as-a-Judge [84.34545223897578]
Despite their excellence in many domains, potential issues are under-explored, undermining their reliability and the scope of their utility.
We identify 12 key potential biases and propose a new automated bias quantification framework-CALM- which quantifies and analyzes each type of bias in LLM-as-a-Judge.
Our work highlights the need for stakeholders to address these issues and remind users to exercise caution in LLM-as-a-Judge applications.
arXiv Detail & Related papers (2024-10-03T17:53:30Z) - A Multi-LLM Debiasing Framework [85.17156744155915]
Large Language Models (LLMs) are powerful tools with the potential to benefit society immensely, yet, they have demonstrated biases that perpetuate societal inequalities.
Recent research has shown a growing interest in multi-LLM approaches, which have been demonstrated to be effective in improving the quality of reasoning.
We propose a novel multi-LLM debiasing framework aimed at reducing bias in LLMs.
arXiv Detail & Related papers (2024-09-20T20:24:50Z) - Aligning (Medical) LLMs for (Counterfactual) Fairness [2.089191490381739]
Large Language Models (LLMs) have emerged as promising solutions for medical and clinical decision support applications.
LLMs are subject to different types of biases, which can lead to unfair treatment of individuals, worsening health disparities, and reducing trust in AI-augmented medical tools.
We present a new model alignment approach for aligning LLMs using a preference optimization method within a knowledge distillation framework.
arXiv Detail & Related papers (2024-08-22T01:11:27Z) - Unboxing Occupational Bias: Grounded Debiasing of LLMs with U.S. Labor Data [9.90951705988724]
Large Language Models (LLM) are prone to inheriting and amplifying societal biases.
LLM bias can have far-reaching consequences, leading to unfair practices and exacerbating social inequalities.
arXiv Detail & Related papers (2024-08-20T23:54:26Z) - CEB: Compositional Evaluation Benchmark for Fairness in Large Language Models [58.57987316300529]
Large Language Models (LLMs) are increasingly deployed to handle various natural language processing (NLP) tasks.
To evaluate the biases exhibited by LLMs, researchers have recently proposed a variety of datasets.
We propose CEB, a Compositional Evaluation Benchmark that covers different types of bias across different social groups and tasks.
arXiv Detail & Related papers (2024-07-02T16:31:37Z) - Bias patterns in the application of LLMs for clinical decision support: A comprehensive study [2.089191490381739]
Large Language Models (LLMs) have emerged as powerful candidates to inform clinical decision-making processes.
These models play an increasingly prominent role in shaping the digital landscape.
Two growing concerns emerge in healthcare applications: 1) to what extent do LLMs exhibit social bias based on patients' protected attributes (like race), and 2) how do design choices (like architecture design and prompting strategies) influence the observed biases?
arXiv Detail & Related papers (2024-04-23T15:52:52Z) - Auditing Algorithmic Fairness in Machine Learning for Health with
Severity-Based LOGAN [70.76142503046782]
We propose supplementing machine learning-based (ML) healthcare tools for bias with SLOGAN, an automatic tool for capturing local biases in a clinical prediction task.
LOGAN adapts an existing tool, LOcal Group biAs detectioN, by contextualizing group bias detection in patient illness severity and past medical history.
On average, SLOGAN identifies larger fairness disparities in over 75% of patient groups than LOGAN while maintaining clustering quality.
arXiv Detail & Related papers (2022-11-16T08:04:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.