Federated Knowledge Transfer Fine-tuning Large Server Model with Resource-Constrained IoT Clients
- URL: http://arxiv.org/abs/2407.05268v1
- Date: Sun, 7 Jul 2024 05:46:01 GMT
- Title: Federated Knowledge Transfer Fine-tuning Large Server Model with Resource-Constrained IoT Clients
- Authors: Shaoyuan Chen, Linlin You, Rui Liu, Shuo Yu, Ahmed M. Abdelmoniem,
- Abstract summary: We propose KOALA (Federated Knowledge Transfer Fine-tuning Large Server Model with Resource-Constrained IoT Clients) to impel the training of large models in the Internet of Things.
We leverage federated learning and knowledge distillation to update large models through collaboration with their small models.
Our method can not only achieve similar training performance but also significantly reduce the need for local storage and computing power resources.
- Score: 10.305544603479163
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The training of large models, involving fine-tuning, faces the scarcity of high-quality data. Compared to the solutions based on centralized data centers, updating large models in the Internet of Things (IoT) faces challenges in coordinating knowledge from distributed clients by using their private and heterogeneous data. To tackle such a challenge, we propose KOALA (Federated Knowledge Transfer Fine-tuning Large Server Model with Resource-Constrained IoT Clients) to impel the training of large models in IoT. Since the resources obtained by IoT clients are limited and restricted, it is infeasible to locally execute large models and also update them in a privacy-preserving manner. Therefore, we leverage federated learning and knowledge distillation to update large models through collaboration with their small models, which can run locally at IoT clients to process their private data separately and enable large-small model knowledge transfer through iterative learning between the server and clients. Moreover, to support clients with similar or different computing capacities, KOALA is designed with two kinds of large-small model joint learning modes, namely to be homogeneous or heterogeneous. Experimental results demonstrate that compared to the conventional approach, our method can not only achieve similar training performance but also significantly reduce the need for local storage and computing power resources.
Related papers
- Personalized Hierarchical Split Federated Learning in Wireless Networks [24.664469755746463]
We propose a personalized hierarchical split federated learning (PHSFL) algorithm that is specially designed to achieve better personalization performance.
We first perform extensive theoretical analysis to understand the impact of model splitting and hierarchical model aggregations on the global model.
Once the global model is trained, we fine-tune each client to obtain the personalized models.
arXiv Detail & Related papers (2024-11-09T02:41:53Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - PFSL: Personalized & Fair Split Learning with Data & Label Privacy for
thin clients [0.5144809478361603]
PFSL is a new framework of distributed split learning where a large number of thin clients perform transfer learning in parallel.
We implement a lightweight step of personalization of client models to provide high performance for their respective data distributions.
Our accuracy far exceeds that of current algorithms SL and is very close to that of centralized learning on several real-life benchmarks.
arXiv Detail & Related papers (2023-03-19T10:38:29Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device)
In FL, each data holder trains a model locally and releases it to a central server for aggregation.
In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation).
In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss.
arXiv Detail & Related papers (2022-11-20T10:49:22Z) - Meta Knowledge Condensation for Federated Learning [65.20774786251683]
Existing federated learning paradigms usually extensively exchange distributed models at a central solver to achieve a more powerful model.
This would incur severe communication burden between a server and multiple clients especially when data distributions are heterogeneous.
Unlike existing paradigms, we introduce an alternative perspective to significantly decrease the communication cost in federate learning.
arXiv Detail & Related papers (2022-09-29T15:07:37Z) - No One Left Behind: Inclusive Federated Learning over Heterogeneous
Devices [79.16481453598266]
We propose InclusiveFL, a client-inclusive federated learning method to handle this problem.
The core idea of InclusiveFL is to assign models of different sizes to clients with different computing capabilities.
We also propose an effective method to share the knowledge among multiple local models with different sizes.
arXiv Detail & Related papers (2022-02-16T13:03:27Z) - FedGEMS: Federated Learning of Larger Server Models via Selective
Knowledge Fusion [19.86388925556209]
Federated Learning (FL) has emerged as a viable solution to learn a global model while keeping data private.
In this work, we investigate a novel paradigm to take advantage of a powerful server model to break through model capacity in FL.
arXiv Detail & Related papers (2021-10-21T10:06:44Z) - FedKD: Communication Efficient Federated Learning via Knowledge
Distillation [56.886414139084216]
Federated learning is widely used to learn intelligent models from decentralized data.
In federated learning, clients need to communicate their local model updates in each iteration of model learning.
We propose a communication efficient federated learning method based on knowledge distillation.
arXiv Detail & Related papers (2021-08-30T15:39:54Z) - Decentralized Federated Learning via Mutual Knowledge Transfer [37.5341683644709]
Decentralized federated learning (DFL) is a problem in the Internet of things (IoT) systems.
We propose a mutual knowledge transfer (Def-KT) algorithm where local clients fuse models by transferring their learnt knowledge to each other.
Our experiments on the MNIST, Fashion-MNIST, and CIFAR10 datasets reveal datasets that the proposed Def-KT algorithm significantly outperforms the baseline DFL methods.
arXiv Detail & Related papers (2020-12-24T01:43:53Z) - Federated Mutual Learning [65.46254760557073]
Federated Mutual Leaning (FML) allows clients training a generalized model collaboratively and a personalized model independently.
The experiments show that FML can achieve better performance than alternatives in typical Federated learning setting.
arXiv Detail & Related papers (2020-06-27T09:35:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.