Evolutionary Trigger Detection and Lightweight Model Repair Based Backdoor Defense
- URL: http://arxiv.org/abs/2407.05396v2
- Date: Sun, 14 Jul 2024 08:25:25 GMT
- Title: Evolutionary Trigger Detection and Lightweight Model Repair Based Backdoor Defense
- Authors: Qi Zhou, Zipeng Ye, Yubo Tang, Wenjian Luo, Yuhui Shi, Yan Jia,
- Abstract summary: Deep Neural Networks (DNNs) have been widely used in many areas such as autonomous driving and face recognition.
A backdoor in the DNN model can be activated by a poisoned input with trigger and leads to wrong prediction.
We propose an efficient backdoor defense based on evolutionary trigger detection and lightweight model repair.
- Score: 10.310546695762467
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Neural Networks (DNNs) have been widely used in many areas such as autonomous driving and face recognition. However, DNN model is fragile to backdoor attack. A backdoor in the DNN model can be activated by a poisoned input with trigger and leads to wrong prediction, which causes serious security issues in applications. It is challenging for current defenses to eliminate the backdoor effectively with limited computing resources, especially when the sizes and numbers of the triggers are variable as in the physical world. We propose an efficient backdoor defense based on evolutionary trigger detection and lightweight model repair. In the first phase of our method, CAM-focus Evolutionary Trigger Filter (CETF) is proposed for trigger detection. CETF is an effective sample-preprocessing based method with the evolutionary algorithm, and our experimental results show that CETF not only distinguishes the images with triggers accurately from the clean images, but also can be widely used in practice for its simplicity and stability in different backdoor attack situations. In the second phase of our method, we leverage several lightweight unlearning methods with the trigger detected by CETF for model repair, which also constructively demonstrate the underlying correlation of the backdoor with Batch Normalization layers. Source code will be published after accepted.
Related papers
- T2IShield: Defending Against Backdoors on Text-to-Image Diffusion Models [70.03122709795122]
We propose a comprehensive defense method named T2IShield to detect, localize, and mitigate backdoor attacks.
We find the "Assimilation Phenomenon" on the cross-attention maps caused by the backdoor trigger.
For backdoor sample detection, T2IShield achieves a detection F1 score of 88.9$%$ with low computational cost.
arXiv Detail & Related papers (2024-07-05T01:53:21Z) - Backdoor Attack with Mode Mixture Latent Modification [26.720292228686446]
We propose a backdoor attack paradigm that only requires minimal alterations to a clean model in order to inject the backdoor under the guise of fine-tuning.
We evaluate the effectiveness of our method on four popular benchmark datasets.
arXiv Detail & Related papers (2024-03-12T09:59:34Z) - Backdoor Attack with Sparse and Invisible Trigger [57.41876708712008]
Deep neural networks (DNNs) are vulnerable to backdoor attacks.
backdoor attack is an emerging yet threatening training-phase threat.
We propose a sparse and invisible backdoor attack (SIBA)
arXiv Detail & Related papers (2023-05-11T10:05:57Z) - Mask and Restore: Blind Backdoor Defense at Test Time with Masked
Autoencoder [57.739693628523]
We propose a framework for blind backdoor defense with Masked AutoEncoder (BDMAE)
BDMAE detects possible triggers in the token space using image structural similarity and label consistency between the test image and MAE restorations.
Our approach is blind to the model restorations, trigger patterns and image benignity.
arXiv Detail & Related papers (2023-03-27T19:23:33Z) - Backdoor Defense via Deconfounded Representation Learning [17.28760299048368]
We propose a Causality-inspired Backdoor Defense (CBD) to learn deconfounded representations for reliable classification.
CBD is effective in reducing backdoor threats while maintaining high accuracy in predicting benign samples.
arXiv Detail & Related papers (2023-03-13T02:25:59Z) - BATT: Backdoor Attack with Transformation-based Triggers [72.61840273364311]
Deep neural networks (DNNs) are vulnerable to backdoor attacks.
Backdoor adversaries inject hidden backdoors that can be activated by adversary-specified trigger patterns.
One recent research revealed that most of the existing attacks failed in the real physical world.
arXiv Detail & Related papers (2022-11-02T16:03:43Z) - Backdoor Defense via Suppressing Model Shortcuts [91.30995749139012]
In this paper, we explore the backdoor mechanism from the angle of the model structure.
We demonstrate that the attack success rate (ASR) decreases significantly when reducing the outputs of some key skip connections.
arXiv Detail & Related papers (2022-11-02T15:39:19Z) - Imperceptible Backdoor Attack: From Input Space to Feature
Representation [24.82632240825927]
Backdoor attacks are rapidly emerging threats to deep neural networks (DNNs)
In this paper, we analyze the drawbacks of existing attack approaches and propose a novel imperceptible backdoor attack.
Our trigger only modifies less than 1% pixels of a benign image while the magnitude is 1.
arXiv Detail & Related papers (2022-05-06T13:02:26Z) - An Adaptive Black-box Backdoor Detection Method for Deep Neural Networks [25.593824693347113]
Deep Neural Networks (DNNs) have demonstrated unprecedented performance across various fields such as medical diagnosis and autonomous driving.
They are identified to be vulnerable to Neural Trojan (NT) attacks that are controlled and activated by stealthy triggers.
We propose a robust and adaptive Trojan detection scheme that inspects whether a pre-trained model has been Trojaned before its deployment.
arXiv Detail & Related papers (2022-04-08T23:41:19Z) - Black-box Detection of Backdoor Attacks with Limited Information and
Data [56.0735480850555]
We propose a black-box backdoor detection (B3D) method to identify backdoor attacks with only query access to the model.
In addition to backdoor detection, we also propose a simple strategy for reliable predictions using the identified backdoored models.
arXiv Detail & Related papers (2021-03-24T12:06:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.