Open-world Multi-label Text Classification with Extremely Weak Supervision
- URL: http://arxiv.org/abs/2407.05609v1
- Date: Mon, 8 Jul 2024 04:52:49 GMT
- Title: Open-world Multi-label Text Classification with Extremely Weak Supervision
- Authors: Xintong Li, Jinya Jiang, Ria Dharmani, Jayanth Srinivasa, Gaowen Liu, Jingbo Shang,
- Abstract summary: We study open-world multi-label text classification under extremely weak supervision (XWS)
We first utilize the user description to prompt a large language model (LLM) for dominant keyphrases of a subset of raw documents, and then construct a label space via clustering.
We then apply a zero-shot multi-label classifier to locate the documents with small top predicted scores, so we can revisit their dominant keyphrases for more long-tail labels.
X-MLClass exhibits a remarkable increase in ground-truth label space coverage on various datasets.
- Score: 30.85235057480158
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study open-world multi-label text classification under extremely weak supervision (XWS), where the user only provides a brief description for classification objectives without any labels or ground-truth label space. Similar single-label XWS settings have been explored recently, however, these methods cannot be easily adapted for multi-label. We observe that (1) most documents have a dominant class covering the majority of content and (2) long-tail labels would appear in some documents as a dominant class. Therefore, we first utilize the user description to prompt a large language model (LLM) for dominant keyphrases of a subset of raw documents, and then construct a (initial) label space via clustering. We further apply a zero-shot multi-label classifier to locate the documents with small top predicted scores, so we can revisit their dominant keyphrases for more long-tail labels. We iterate this process to discover a comprehensive label space and construct a multi-label classifier as a novel method, X-MLClass. X-MLClass exhibits a remarkable increase in ground-truth label space coverage on various datasets, for example, a 40% improvement on the AAPD dataset over topic modeling and keyword extraction methods. Moreover, X-MLClass achieves the best end-to-end multi-label classification accuracy.
Related papers
- Substituting Data Annotation with Balanced Updates and Collective Loss
in Multi-label Text Classification [19.592985329023733]
Multi-label text classification (MLTC) is the task of assigning multiple labels to a given text.
We study the MLTC problem in annotation-free and scarce-annotation settings in which the magnitude of available supervision signals is linear to the number of labels.
Our method follows three steps, (1) mapping input text into a set of preliminary label likelihoods by natural language inference using a pre-trained language model, (2) calculating a signed label dependency graph by label descriptions, and (3) updating the preliminary label likelihoods with message passing along the label dependency graph.
arXiv Detail & Related papers (2023-09-24T04:12:52Z) - Disambiguated Attention Embedding for Multi-Instance Partial-Label
Learning [68.56193228008466]
In many real-world tasks, the concerned objects can be represented as a multi-instance bag associated with a candidate label set.
Existing MIPL approach follows the instance-space paradigm by assigning augmented candidate label sets of bags to each instance and aggregating bag-level labels from instance-level labels.
We propose an intuitive algorithm named DEMIPL, i.e., Disambiguated attention Embedding for Multi-Instance Partial-Label learning.
arXiv Detail & Related papers (2023-05-26T13:25:17Z) - Adopting the Multi-answer Questioning Task with an Auxiliary Metric for
Extreme Multi-label Text Classification Utilizing the Label Hierarchy [10.87653109398961]
This paper adopts the multi-answer questioning task for extreme multi-label classification.
This study adopts the proposed method and the evaluation metric to the legal domain.
arXiv Detail & Related papers (2023-03-02T08:40:31Z) - Large Loss Matters in Weakly Supervised Multi-Label Classification [50.262533546999045]
We first regard unobserved labels as negative labels, casting the W task into noisy multi-label classification.
We propose novel methods for W which reject or correct the large loss samples to prevent model from memorizing the noisy label.
Our methodology actually works well, validating that treating large loss properly matters in a weakly supervised multi-label classification.
arXiv Detail & Related papers (2022-06-08T08:30:24Z) - Open Vocabulary Extreme Classification Using Generative Models [24.17018785195843]
The extreme multi-label classification (XMC) task aims at tagging content with a subset of labels from an extremely large label set.
We propose GROOV, a fine-tuned seq2seq model for OXMC that generates the set of labels as a flat sequence and is trained using a novel loss independent of predicted label order.
We show the efficacy of the approach, experimenting with popular XMC datasets for which GROOV is able to predict meaningful labels outside the given vocabulary while performing on par with state-of-the-art solutions for known labels.
arXiv Detail & Related papers (2022-05-12T00:33:49Z) - Label Disentanglement in Partition-based Extreme Multilabel
Classification [111.25321342479491]
We show that the label assignment problem in partition-based XMC can be formulated as an optimization problem.
We show that our method can successfully disentangle multi-modal labels, leading to state-of-the-art (SOTA) results on four XMC benchmarks.
arXiv Detail & Related papers (2021-06-24T03:24:18Z) - Evaluating Multi-label Classifiers with Noisy Labels [0.7868449549351487]
In the real world, it is more common to deal with noisy datasets than clean datasets.
We present a Context-Based Multi-Label-Classifier (CbMLC) that effectively handles noisy labels.
We show CbMLC yields substantial improvements over the previous methods in most cases.
arXiv Detail & Related papers (2021-02-16T19:50:52Z) - MATCH: Metadata-Aware Text Classification in A Large Hierarchy [60.59183151617578]
MATCH is an end-to-end framework that leverages both metadata and hierarchy information.
We propose different ways to regularize the parameters and output probability of each child label by its parents.
Experiments on two massive text datasets with large-scale label hierarchies demonstrate the effectiveness of MATCH.
arXiv Detail & Related papers (2021-02-15T05:23:08Z) - Unsupervised Label Refinement Improves Dataless Text Classification [48.031421660674745]
Dataless text classification is capable of classifying documents into previously unseen labels by assigning a score to any document paired with a label description.
While promising, it crucially relies on accurate descriptions of the label set for each downstream task.
This reliance causes dataless classifiers to be highly sensitive to the choice of label descriptions and hinders the broader application of dataless classification in practice.
arXiv Detail & Related papers (2020-12-08T03:37:50Z) - An Empirical Study on Large-Scale Multi-Label Text Classification
Including Few and Zero-Shot Labels [49.036212158261215]
Large-scale Multi-label Text Classification (LMTC) has a wide range of Natural Language Processing (NLP) applications.
Current state-of-the-art LMTC models employ Label-Wise Attention Networks (LWANs)
We show that hierarchical methods based on Probabilistic Label Trees (PLTs) outperform LWANs.
We propose a new state-of-the-art method which combines BERT with LWANs.
arXiv Detail & Related papers (2020-10-04T18:55:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.