LGRNet: Local-Global Reciprocal Network for Uterine Fibroid Segmentation in Ultrasound Videos
- URL: http://arxiv.org/abs/2407.05703v1
- Date: Mon, 8 Jul 2024 08:06:06 GMT
- Title: LGRNet: Local-Global Reciprocal Network for Uterine Fibroid Segmentation in Ultrasound Videos
- Authors: Huihui Xu, Yijun Yang, Angelica I Aviles-Rivero, Guang Yang, Jing Qin, Lei Zhu,
- Abstract summary: Regular screening and early discovery of uterine fibroid are crucial for preventing potential malignant transformations.
We present Local-Global Reciprocal Network (LGRNet) to efficiently and effectively propagate the long-term temporal context.
- Score: 19.661094457941417
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Regular screening and early discovery of uterine fibroid are crucial for preventing potential malignant transformations and ensuring timely, life-saving interventions. To this end, we collect and annotate the first ultrasound video dataset with 100 videos for uterine fibroid segmentation (UFUV). We also present Local-Global Reciprocal Network (LGRNet) to efficiently and effectively propagate the long-term temporal context which is crucial to help distinguish between uninformative noisy surrounding tissues and target lesion regions. Specifically, the Cyclic Neighborhood Propagation (CNP) is introduced to propagate the inter-frame local temporal context in a cyclic manner. Moreover, to aggregate global temporal context, we first condense each frame into a set of frame bottleneck queries and devise Hilbert Selective Scan (HilbertSS) to both efficiently path connect each frame and preserve the locality bias. A distribute layer is then utilized to disseminate back the global context for reciprocal refinement. Extensive experiments on UFUV and three public Video Polyp Segmentation (VPS) datasets demonstrate consistent improvements compared to state-of-the-art segmentation methods, indicating the effectiveness and versatility of LGRNet. Code, checkpoints, and dataset are available at https://github.com/bio-mlhui/LGRNet
Related papers
- Shifting More Attention to Breast Lesion Segmentation in Ultrasound
Videos [43.454994341021276]
We meticulously curated a US video breast lesion segmentation dataset comprising 572 videos and 34,300 annotated frames.
We propose a novel frequency and localization feature aggregation network (FLA-Net) that learns temporal features from the frequency domain.
Our experiments on our annotated dataset and two public video polyp segmentation datasets demonstrate that our proposed FLA-Net achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-10-03T07:50:32Z) - Multi-Level Global Context Cross Consistency Model for Semi-Supervised
Ultrasound Image Segmentation with Diffusion Model [0.0]
We propose a framework that uses images generated by a Latent Diffusion Model (LDM) as unlabeled images for semi-supervised learning.
Our approach enables the effective transfer of probability distribution knowledge to the segmentation network, resulting in improved segmentation accuracy.
arXiv Detail & Related papers (2023-05-16T14:08:24Z) - Exploring Intra- and Inter-Video Relation for Surgical Semantic Scene
Segmentation [58.74791043631219]
We propose a novel framework STswinCL that explores the complementary intra- and inter-video relations to boost segmentation performance.
We extensively validate our approach on two public surgical video benchmarks, including EndoVis18 Challenge and CaDIS dataset.
Experimental results demonstrate the promising performance of our method, which consistently exceeds previous state-of-the-art approaches.
arXiv Detail & Related papers (2022-03-29T05:52:23Z) - Video Is Graph: Structured Graph Module for Video Action Recognition [34.918667614077805]
We transform a video sequence into a graph to obtain direct long-term dependencies among temporal frames.
In particular, SGM divides the neighbors of each node into several temporal regions so as to extract global structural information.
The reported performance and analysis demonstrate that SGM can achieve outstanding precision with less computational complexity.
arXiv Detail & Related papers (2021-10-12T11:27:29Z) - Efficient Global-Local Memory for Real-time Instrument Segmentation of
Robotic Surgical Video [53.14186293442669]
We identify two important clues for surgical instrument perception, including local temporal dependency from adjacent frames and global semantic correlation in long-range duration.
We propose a novel dual-memory network (DMNet) to relate both global and local-temporal knowledge.
Our method largely outperforms the state-of-the-art works on segmentation accuracy while maintaining a real-time speed.
arXiv Detail & Related papers (2021-09-28T10:10:14Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z) - Global Guidance Network for Breast Lesion Segmentation in Ultrasound
Images [84.03487786163781]
We develop a deep convolutional neural network equipped with a global guidance block (GGB) and breast lesion boundary detection modules.
Our network outperforms other medical image segmentation methods and the recent semantic segmentation methods on breast ultrasound lesion segmentation.
arXiv Detail & Related papers (2021-04-05T13:15:22Z) - Context-aware Biaffine Localizing Network for Temporal Sentence
Grounding [61.18824806906945]
This paper addresses the problem of temporal sentence grounding (TSG)
TSG aims to identify the temporal boundary of a specific segment from an untrimmed video by a sentence query.
We propose a novel localization framework that scores all pairs of start and end indices within the video simultaneously with a biaffine mechanism.
arXiv Detail & Related papers (2021-03-22T03:13:05Z) - Recovering the Imperfect: Cell Segmentation in the Presence of
Dynamically Localized Proteins [31.835275627382497]
We provide a solution to segmentation of imperfect data through time based on temporal propagation and uncertainty estimation.
We demonstrate the value of this approach over frame-by-frame segmentation and regular temporal propagation on data from human embryonic kidney cells.
arXiv Detail & Related papers (2020-11-20T16:30:55Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19.
segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues.
To address these challenges, a novel COVID-19 Deep Lung Infection Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices.
arXiv Detail & Related papers (2020-04-22T07:30:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.