Affordances-Oriented Planning using Foundation Models for Continuous Vision-Language Navigation
- URL: http://arxiv.org/abs/2407.05890v2
- Date: Tue, 20 Aug 2024 14:51:04 GMT
- Title: Affordances-Oriented Planning using Foundation Models for Continuous Vision-Language Navigation
- Authors: Jiaqi Chen, Bingqian Lin, Xinmin Liu, Lin Ma, Xiaodan Liang, Kwan-Yee K. Wong,
- Abstract summary: We propose a novel Affordances-Oriented Planner for continuous vision-language navigation (VLN) task.
Our AO-Planner integrates various foundation models to achieve affordances-oriented low-level motion planning and high-level decision-making.
Experiments on the challenging R2R-CE and RxR-CE datasets show that AO-Planner achieves state-of-the-art zero-shot performance.
- Score: 64.84996994779443
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LLM-based agents have demonstrated impressive zero-shot performance in vision-language navigation (VLN) task. However, existing LLM-based methods often focus only on solving high-level task planning by selecting nodes in predefined navigation graphs for movements, overlooking low-level control in navigation scenarios. To bridge this gap, we propose AO-Planner, a novel Affordances-Oriented Planner for continuous VLN task. Our AO-Planner integrates various foundation models to achieve affordances-oriented low-level motion planning and high-level decision-making, both performed in a zero-shot setting. Specifically, we employ a Visual Affordances Prompting (VAP) approach, where the visible ground is segmented by SAM to provide navigational affordances, based on which the LLM selects potential candidate waypoints and plans low-level paths towards selected waypoints. We further propose a high-level PathAgent which marks planned paths into the image input and reasons the most probable path by comprehending all environmental information. Finally, we convert the selected path into 3D coordinates using camera intrinsic parameters and depth information, avoiding challenging 3D predictions for LLMs. Experiments on the challenging R2R-CE and RxR-CE datasets show that AO-Planner achieves state-of-the-art zero-shot performance (8.8% improvement on SPL). Our method can also serve as a data annotator to obtain pseudo-labels, distilling its waypoint prediction ability into a learning-based predictor. This new predictor does not require any waypoint data from the simulator and achieves 47% SR competing with supervised methods. We establish an effective connection between LLM and 3D world, presenting novel prospects for employing foundation models in low-level motion control.
Related papers
- SG-Nav: Online 3D Scene Graph Prompting for LLM-based Zero-shot Object Navigation [83.4599149936183]
Existing zero-shot object navigation methods prompt LLM with the text of spatially closed objects.
We propose to represent the observed scene with 3D scene graph.
We conduct extensive experiments on MP3D, HM3D and RoboTHOR environments, where SG-Nav surpasses previous state-of-the-art zero-shot methods by more than 10% SR on all benchmarks.
arXiv Detail & Related papers (2024-10-10T17:57:19Z) - PRET: Planning with Directed Fidelity Trajectory for Vision and Language Navigation [30.710806048991923]
Vision and language navigation is a task that requires an agent to navigate according to a natural language instruction.
Recent methods predict sub-goals on constructed topology map at each step to enable long-term action planning.
We propose an alternative method that facilitates navigation planning by considering the alignment between instructions and directed fidelity trajectories.
arXiv Detail & Related papers (2024-07-16T08:22:18Z) - Embodied AI in Mobile Robots: Coverage Path Planning with Large Language Models [6.860460230412773]
We propose an LLM-embodied path planning framework for mobile agents.
Our proposed multi-layer architecture uses prompted LLMs in the path planning phase and integrates them with the mobile agents' low-level actuators.
Our experiments show that this framework can improve LLMs' 2D plane reasoning abilities and complete coverage path planning tasks.
arXiv Detail & Related papers (2024-07-02T12:38:46Z) - NavCoT: Boosting LLM-Based Vision-and-Language Navigation via Learning
Disentangled Reasoning [101.56342075720588]
Vision-and-Language Navigation (VLN), as a crucial research problem of Embodied AI, requires an embodied agent to navigate through complex 3D environments following natural language instructions.
Recent research has highlighted the promising capacity of large language models (LLMs) in VLN by improving navigational reasoning accuracy and interpretability.
This paper introduces a novel strategy called Navigational Chain-of-Thought (NavCoT), where we fulfill parameter-efficient in-domain training to enable self-guided navigational decision.
arXiv Detail & Related papers (2024-03-12T07:27:02Z) - VoroNav: Voronoi-based Zero-shot Object Navigation with Large Language
Model [28.79971953667143]
VoroNav is a semantic exploration framework to extract exploratory paths and planning nodes from a semantic map constructed in real time.
By harnessing topological and semantic information, VoroNav designs text-based descriptions of paths and images that are readily interpretable by a large language model.
arXiv Detail & Related papers (2024-01-05T08:05:07Z) - OccNeRF: Advancing 3D Occupancy Prediction in LiDAR-Free Environments [77.0399450848749]
We propose an OccNeRF method for training occupancy networks without 3D supervision.
We parameterize the reconstructed occupancy fields and reorganize the sampling strategy to align with the cameras' infinite perceptive range.
For semantic occupancy prediction, we design several strategies to polish the prompts and filter the outputs of a pretrained open-vocabulary 2D segmentation model.
arXiv Detail & Related papers (2023-12-14T18:58:52Z) - Can an Embodied Agent Find Your "Cat-shaped Mug"? LLM-Guided Exploration
for Zero-Shot Object Navigation [58.3480730643517]
We present LGX, a novel algorithm for Language-Driven Zero-Shot Object Goal Navigation (L-ZSON)
Our approach makes use of Large Language Models (LLMs) for this task.
We achieve state-of-the-art zero-shot object navigation results on RoboTHOR with a success rate (SR) improvement of over 27% over the current baseline.
arXiv Detail & Related papers (2023-03-06T20:19:19Z) - 1st Place Solutions for RxR-Habitat Vision-and-Language Navigation
Competition (CVPR 2022) [28.5740809300599]
We present a modular plan-and-control approach for the problem of Vision-and-Language Navigation in Continuous Environments (VLN-CE)
Our model consists of three modules: the candidate waypoints predictor (CWP), the history enhanced planner and the tryout controller.
Our model won the RxR-Habitat Competition 2022, with 48% and 90% relative improvements over existing methods on NDTW and SR metrics respectively.
arXiv Detail & Related papers (2022-06-23T10:36:53Z) - Bridging the Gap Between Learning in Discrete and Continuous
Environments for Vision-and-Language Navigation [41.334731014665316]
Most existing works in vision-and-language navigation (VLN) focus on either discrete or continuous environments.
We propose a predictor to generate a set of candidate waypoints during navigation.
We show that agents navigating in continuous environments with predicted waypoints perform significantly better than agents using low-level actions.
arXiv Detail & Related papers (2022-03-05T14:56:14Z) - SOON: Scenario Oriented Object Navigation with Graph-based Exploration [102.74649829684617]
The ability to navigate like a human towards a language-guided target from anywhere in a 3D embodied environment is one of the 'holy grail' goals of intelligent robots.
Most visual navigation benchmarks focus on navigating toward a target from a fixed starting point, guided by an elaborate set of instructions that depicts step-by-step.
This approach deviates from real-world problems in which human-only describes what the object and its surrounding look like and asks the robot to start navigation from anywhere.
arXiv Detail & Related papers (2021-03-31T15:01:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.