Unveiling nonmagnetic phase and many-body entanglement in two-dimensional random quantum magnets Sr$_2$CuTe$_{1-x}$W$_x$O$_6$
- URL: http://arxiv.org/abs/2407.05917v1
- Date: Mon, 8 Jul 2024 13:22:51 GMT
- Title: Unveiling nonmagnetic phase and many-body entanglement in two-dimensional random quantum magnets Sr$_2$CuTe$_{1-x}$W$_x$O$_6$
- Authors: Dian Wu, Fan Yang, Giuseppe Carleo,
- Abstract summary: We capture the physics of a series of spin stripe/2$ Heisenberg antiferromagnet compounds on a square lattice.
An intermediate range of $x in [0.08, 0.55]$ is identified for a nonmagnetic phase without the long-range N'eel or stripe order.
Deep inside this phase around $x = 0.3$, we observe signatures potentially linked to randomness-induced short-range spin-liquid-like states.
- Score: 2.7204116565403744
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We apply a random-plaquette $J_1$-$J_2$ model on the square lattice to capture the physics of a series of spin-$1/2$ Heisenberg antiferromagnet compounds Sr$_2$CuTe$_{1-x}$W$_x$O$_6$. With the input of experimentally relevant coupling strengths, our exact diagonalization (ED) study probes the ground state properties beyond previous linear spin-wave approach. An intermediate range of $x \in [0.08, 0.55]$ is identified for a nonmagnetic phase without the long-range N\'eel or stripe order. The absence of both valence-bond-glass order and spin-glass non-ergodic dynamics renders its nature intriguing. Deep inside this phase around $x = 0.3$, we observe signatures potentially linked to randomness-induced short-range spin-liquid-like (SLL) states, including close to zero spin-freezing parameter, vanishing spin-spin correlation beyond nearest neighbors, almost uniform static spin structure factor, as well as a broad tail in the dynamical spin structure factor. The nonmagnetic phase also features multipartite entanglement in the ground state witnessed by quantum Fisher information (QFI), which exhibits universal scaling behaviors at quantum critical points.
Related papers
- Gapped and gapless quantum spin liquids on the ruby lattice [0.0]
We present a total of 50 U$bbZ(1) and 182 distinct states of ruby spin on mean-consistent structures.
We also obtain a total of 64 anti-respecting space-group theories of spin on mean-consistent structures.
arXiv Detail & Related papers (2024-09-24T18:00:00Z) - Waveguide QED at the onset of spin-spin correlations [36.136619420474766]
We find that molecules belonging to the crystal sublattice B form one-dimensional spin chains.
The microwave transmission shows evidences for the collective coupling of quasi-identical spins to the propagating photons.
arXiv Detail & Related papers (2024-04-04T18:00:05Z) - Ancilla quantum measurements on interacting chains: Sensitivity of entanglement dynamics to the type and concentration of detectors [46.76612530830571]
We consider a quantum many-body lattice system that is coupled to ancillary degrees of freedom (detectors'')
We explore the dynamics of density and of entanglement entropy in the chain, for various values of $rho_a$ and $M$.
arXiv Detail & Related papers (2023-11-21T21:41:11Z) - Cooperative quantum tunneling of the magnetization in Fe-doped Li$_3$N [0.0]
The spin-reversal in dilute Li$$$(Li$_1-x$Fe$_x$)N with $x 1$ % is dominated by resonant quantum tunneling of spatially well-separated states.
We report on the effect of finite couplings between those states that give rise to cooperative, simultaneous quantum tunneling of two spins.
arXiv Detail & Related papers (2023-10-27T14:59:42Z) - Spin Current Density Functional Theory of the Quantum Spin-Hall Phase [59.50307752165016]
We apply the spin current density functional theory to the quantum spin-Hall phase.
We show that the explicit account of spin currents in the electron-electron potential of the SCDFT is key to the appearance of a Dirac cone.
arXiv Detail & Related papers (2022-08-29T20:46:26Z) - Understanding the propagation of excitations in quantum spin chains with
different kind of interactions [68.8204255655161]
It is shown that the inhomogeneous chains are able to transfer excitations with near perfect fidelity.
It is shown that both designed chains have in common a partially ordered spectrum and well localized eigenvectors.
arXiv Detail & Related papers (2021-12-31T15:09:48Z) - Phase diagram of a distorted kagome antiferromagnet and application to
Y-kapellasite [50.591267188664666]
We reveal a rich ground state phase diagram even at the classical level.
The presented model opens a new direction in the study of kagome antiferromagnets.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Quantum phase transitions in the spin-1 Kitaev-Heisenberg chain [1.438268707994694]
higher-spin analogues of the Kitaev interactions $K>0$ may also occur in a number of materials with strong Hund's and spin-orbit coupling.
Aquantum spin liquid is stable near the Kitaev limit, while a topological Haldane phase is found for $J>0$.
arXiv Detail & Related papers (2020-09-29T17:09:44Z) - Gapless quantum spin liquid and global phase diagram of the spin-1/2
$J_1$-$J_2$ square antiferromagnetic Heisenberg model [1.2728971015881008]
We show that the intermediate nonmagnetic phase is a gapless quantum spin liquid (QSL), whose spin-spin and dimer-dimer correlations both decay with a power law behavior.
We make the first detailed comparison between the results of PEPS and the well-established density matrix renormalization group (DMRG) method through one-to-one direct benchmark for small system sizes.
arXiv Detail & Related papers (2020-09-03T17:39:06Z) - Hyperfine and quadrupole interactions for Dy isotopes in DyPc$_2$
molecules [77.57930329012771]
Nuclear spin levels play an important role in understanding magnetization dynamics and implementation and control of quantum bits in lanthanide-based single-molecule magnets.
We investigate the hyperfine and nuclear quadrupole interactions for $161$Dy and $163$Dy nucleus in anionic DyPc$.
arXiv Detail & Related papers (2020-02-12T18:25:31Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.