Graph-Boosted Attentive Network for Semantic Body Parsing
- URL: http://arxiv.org/abs/2407.05924v1
- Date: Mon, 8 Jul 2024 13:32:01 GMT
- Title: Graph-Boosted Attentive Network for Semantic Body Parsing
- Authors: Tinghuai Wang, Huiling Wang,
- Abstract summary: This paper proposes a novel approach to decomposing multiple human bodies into semantic part regions in unconstrained environments.
We propose a convolutional neural network architecture which comprises of novel semantic and contour attention mechanisms across feature hierarchy.
Our proposed method achieves the state-of-art results on the challenging Pascal Person-Part dataset.
- Score: 1.4042211166197214
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human body parsing remains a challenging problem in natural scenes due to multi-instance and inter-part semantic confusions as well as occlusions. This paper proposes a novel approach to decomposing multiple human bodies into semantic part regions in unconstrained environments. Specifically we propose a convolutional neural network (CNN) architecture which comprises of novel semantic and contour attention mechanisms across feature hierarchy to resolve the semantic ambiguities and boundary localization issues related to semantic body parsing. We further propose to encode estimated pose as higher-level contextual information which is combined with local semantic cues in a novel graphical model in a principled manner. In this proposed model, the lower-level semantic cues can be recursively updated by propagating higher-level contextual information from estimated pose and vice versa across the graph, so as to alleviate erroneous pose information and pixel level predictions. We further propose an optimization technique to efficiently derive the solutions. Our proposed method achieves the state-of-art results on the challenging Pascal Person-Part dataset.
Related papers
- Semantic Loss Functions for Neuro-Symbolic Structured Prediction [74.18322585177832]
We discuss the semantic loss, which injects knowledge about such structure, defined symbolically, into training.
It is agnostic to the arrangement of the symbols, and depends only on the semantics expressed thereby.
It can be combined with both discriminative and generative neural models.
arXiv Detail & Related papers (2024-05-12T22:18:25Z) - IDRNet: Intervention-Driven Relation Network for Semantic Segmentation [34.09179171102469]
Co-occurrent visual patterns suggest that pixel relation modeling facilitates dense prediction tasks.
Despite the impressive results, existing paradigms often suffer from inadequate or ineffective contextual information aggregation.
We propose a novel textbfIntervention-textbfDriven textbfRelation textbfNetwork.
arXiv Detail & Related papers (2023-10-16T18:37:33Z) - Variational Cross-Graph Reasoning and Adaptive Structured Semantics
Learning for Compositional Temporal Grounding [143.5927158318524]
Temporal grounding is the task of locating a specific segment from an untrimmed video according to a query sentence.
We introduce a new Compositional Temporal Grounding task and construct two new dataset splits.
We argue that the inherent structured semantics inside the videos and language is the crucial factor to achieve compositional generalization.
arXiv Detail & Related papers (2023-01-22T08:02:23Z) - A Unified Architecture of Semantic Segmentation and Hierarchical
Generative Adversarial Networks for Expression Manipulation [52.911307452212256]
We develop a unified architecture of semantic segmentation and hierarchical GANs.
A unique advantage of our framework is that on forward pass the semantic segmentation network conditions the generative model.
We evaluate our method on two challenging facial expression translation benchmarks, AffectNet and RaFD, and a semantic segmentation benchmark, CelebAMask-HQ.
arXiv Detail & Related papers (2021-12-08T22:06:31Z) - Local Permutation Equivariance For Graph Neural Networks [2.208242292882514]
We develop a new method, named locally permutation-equivariant graph neural networks.
It provides a framework for building graph neural networks that operate on local node neighbourhoods.
We experimentally validate the method on a range of graph benchmark classification tasks.
arXiv Detail & Related papers (2021-11-23T13:10:34Z) - Thousand to One: Semantic Prior Modeling for Conceptual Coding [26.41657489930382]
We propose an end-to-end semantic prior-based conceptual coding scheme towards extremely low image compression.
We employ semantic segmentation maps as structural guidance for extracting deep semantic prior.
A cross-channel entropy model is proposed to further exploit the inter-channel correlation of the spatially independent semantic prior.
arXiv Detail & Related papers (2021-03-12T08:02:07Z) - Context Decoupling Augmentation for Weakly Supervised Semantic
Segmentation [53.49821324597837]
Weakly supervised semantic segmentation is a challenging problem that has been deeply studied in recent years.
We present a Context Decoupling Augmentation ( CDA) method to change the inherent context in which the objects appear.
To validate the effectiveness of the proposed method, extensive experiments on PASCAL VOC 2012 dataset with several alternative network architectures demonstrate that CDA can boost various popular WSSS methods to the new state-of-the-art by a large margin.
arXiv Detail & Related papers (2021-03-02T15:05:09Z) - Towards Efficient Scene Understanding via Squeeze Reasoning [71.1139549949694]
We propose a novel framework called Squeeze Reasoning.
Instead of propagating information on the spatial map, we first learn to squeeze the input feature into a channel-wise global vector.
We show that our approach can be modularized as an end-to-end trained block and can be easily plugged into existing networks.
arXiv Detail & Related papers (2020-11-06T12:17:01Z) - A Flexible Framework for Designing Trainable Priors with Adaptive
Smoothing and Game Encoding [57.1077544780653]
We introduce a general framework for designing and training neural network layers whose forward passes can be interpreted as solving non-smooth convex optimization problems.
We focus on convex games, solved by local agents represented by the nodes of a graph and interacting through regularization functions.
This approach is appealing for solving imaging problems, as it allows the use of classical image priors within deep models that are trainable end to end.
arXiv Detail & Related papers (2020-06-26T08:34:54Z) - Distributional semantic modeling: a revised technique to train term/word
vector space models applying the ontology-related approach [36.248702416150124]
We design a new technique for the distributional semantic modeling with a neural network-based approach to learn distributed term representations (or term embeddings)
Vec2graph is a Python library for visualizing word embeddings (term embeddings in our case) as dynamic and interactive graphs.
arXiv Detail & Related papers (2020-03-06T18:27:39Z) - Focus on Semantic Consistency for Cross-domain Crowd Understanding [34.560447389853614]
Some domain adaptation algorithms try to liberate it by training models with synthetic data.
We found that a mass of estimation errors in the background areas impede the performance of the existing methods.
In this paper, we propose a domain adaptation method to eliminate it.
arXiv Detail & Related papers (2020-02-20T08:51:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.