Change-Point Detection in Industrial Data Streams based on Online Dynamic Mode Decomposition with Control
- URL: http://arxiv.org/abs/2407.05976v1
- Date: Mon, 8 Jul 2024 14:18:33 GMT
- Title: Change-Point Detection in Industrial Data Streams based on Online Dynamic Mode Decomposition with Control
- Authors: Marek Wadinger, Michal Kvasnica, Yoshinobu Kawahara,
- Abstract summary: We propose a novel change-point detection method based on online Dynamic Mode Decomposition with control (ODMDwC)
Our results demonstrate that this method yields intuitive and improved detection results compared to the Singular-Value-Decomposition-based method.
- Score: 5.293458740536858
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel change-point detection method based on online Dynamic Mode Decomposition with control (ODMDwC). Leveraging ODMDwC's ability to find and track linear approximation of a non-linear system while incorporating control effects, the proposed method dynamically adapts to its changing behavior due to aging and seasonality. This approach enables the detection of changes in spatial, temporal, and spectral patterns, providing a robust solution that preserves correspondence between the score and the extent of change in the system dynamics. We formulate a truncated version of ODMDwC and utilize higher-order time-delay embeddings to mitigate noise and extract broad-band features. Our method addresses the challenges faced in industrial settings where safety-critical systems generate non-uniform data streams while requiring timely and accurate change-point detection to protect profit and life. Our results demonstrate that this method yields intuitive and improved detection results compared to the Singular-Value-Decomposition-based method. We validate our approach using synthetic and real-world data, showing its competitiveness to other approaches on complex systems' benchmark datasets. Provided guidelines for hyperparameters selection enhance our method's practical applicability.
Related papers
- OMLog: Online Log Anomaly Detection for Evolving System with Meta-learning [10.181157278476428]
OMLog is a real-time and reliable online log anomaly detection model.
We introduce a maximum mean discrepancy-based distribution shift detection method.
We also design an online learning mechanism based on meta-learning, which can effectively learn the highly repetitive patterns of log sequences.
arXiv Detail & Related papers (2024-10-22T01:50:07Z) - Partially-Observable Sequential Change-Point Detection for Autocorrelated Data via Upper Confidence Region [12.645304808491309]
We propose a detection scheme called adaptive upper confidence region with state space model (AUCRSS) for sequential change point detection.
A partially-observable Kalman filter algorithm is developed for online inference of SSM, and accordingly, a change point detection scheme based on a generalized likelihood ratio test is analyzed.
arXiv Detail & Related papers (2024-03-30T02:32:53Z) - A Conditioned Unsupervised Regression Framework Attuned to the Dynamic Nature of Data Streams [0.0]
This paper presents an optimal strategy for streaming contexts with limited labeled data, introducing an adaptive technique for unsupervised regression.
The proposed method leverages a sparse set of initial labels and introduces an innovative drift detection mechanism.
To enhance adaptability, we integrate the ADWIN (ADaptive WINdowing) algorithm with error generalization based on Root Mean Square Error (RMSE)
arXiv Detail & Related papers (2023-12-12T19:23:54Z) - Low-rank extended Kalman filtering for online learning of neural
networks from streaming data [71.97861600347959]
We propose an efficient online approximate Bayesian inference algorithm for estimating the parameters of a nonlinear function from a potentially non-stationary data stream.
The method is based on the extended Kalman filter (EKF), but uses a novel low-rank plus diagonal decomposition of the posterior matrix.
In contrast to methods based on variational inference, our method is fully deterministic, and does not require step-size tuning.
arXiv Detail & Related papers (2023-05-31T03:48:49Z) - CEBoosting: Online Sparse Identification of Dynamical Systems with
Regime Switching by Causation Entropy Boosting [1.090458267119282]
Regime switching is ubiquitous in many complex dynamical systems with multiscale features, chaotic behavior, and extreme events.
In this paper, a causation entropy boosting (CEBoosting) strategy is developed to facilitate the detection of regime switching.
The strategy can be combined with data assimilation to identify regime switching triggered by the unobserved latent processes.
arXiv Detail & Related papers (2023-04-16T19:14:03Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
We investigate and compare the performance of several local and global smoothing techniques to a priori denoise the state measurements.
We show that, in general, global methods, which use the entire measurement data set, outperform local methods, which employ a neighboring data subset around a local point.
arXiv Detail & Related papers (2022-01-29T23:31:25Z) - Non-stationary Online Learning with Memory and Non-stochastic Control [71.14503310914799]
We study the problem of Online Convex Optimization (OCO) with memory, which allows loss functions to depend on past decisions.
In this paper, we introduce dynamic policy regret as the performance measure to design algorithms robust to non-stationary environments.
We propose a novel algorithm for OCO with memory that provably enjoys an optimal dynamic policy regret in terms of time horizon, non-stationarity measure, and memory length.
arXiv Detail & Related papers (2021-02-07T09:45:15Z) - Change Point Detection in Time Series Data using Autoencoders with a
Time-Invariant Representation [69.34035527763916]
Change point detection (CPD) aims to locate abrupt property changes in time series data.
Recent CPD methods demonstrated the potential of using deep learning techniques, but often lack the ability to identify more subtle changes in the autocorrelation statistics of the signal.
We employ an autoencoder-based methodology with a novel loss function, through which the used autoencoders learn a partially time-invariant representation that is tailored for CPD.
arXiv Detail & Related papers (2020-08-21T15:03:21Z) - Reinforcement Learning with Fast Stabilization in Linear Dynamical
Systems [91.43582419264763]
We study model-based reinforcement learning (RL) in unknown stabilizable linear dynamical systems.
We propose an algorithm that certifies fast stabilization of the underlying system by effectively exploring the environment.
We show that the proposed algorithm attains $tildemathcalO(sqrtT)$ regret after $T$ time steps of agent-environment interaction.
arXiv Detail & Related papers (2020-07-23T23:06:40Z) - Single-step deep reinforcement learning for open-loop control of laminar
and turbulent flows [0.0]
This research gauges the ability of deep reinforcement learning (DRL) techniques to assist the optimization and control of fluid mechanical systems.
It combines a novel, "degenerate" version of the prototypical policy optimization (PPO) algorithm, that trains a neural network in optimizing the system only once per learning episode.
arXiv Detail & Related papers (2020-06-04T16:11:26Z) - Logarithmic Regret Bound in Partially Observable Linear Dynamical
Systems [91.43582419264763]
We study the problem of system identification and adaptive control in partially observable linear dynamical systems.
We present the first model estimation method with finite-time guarantees in both open and closed-loop system identification.
We show that AdaptOn is the first algorithm that achieves $textpolylogleft(Tright)$ regret in adaptive control of unknown partially observable linear dynamical systems.
arXiv Detail & Related papers (2020-03-25T06:00:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.