RHRSegNet: Relighting High-Resolution Night-Time Semantic Segmentation
- URL: http://arxiv.org/abs/2407.06016v1
- Date: Mon, 8 Jul 2024 15:07:09 GMT
- Title: RHRSegNet: Relighting High-Resolution Night-Time Semantic Segmentation
- Authors: Sarah Elmahdy, Rodaina Hebishy, Ali Hamdi,
- Abstract summary: Night time semantic segmentation is a crucial task in computer vision, focusing on accurately classifying and segmenting objects in low-light conditions.
We propose RHRSegNet, implementing a relighting model over a High-Resolution Network for semantic segmentation.
Our proposed model increases the HRnet segmentation performance by 5% in low-light or nighttime images.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Night time semantic segmentation is a crucial task in computer vision, focusing on accurately classifying and segmenting objects in low-light conditions. Unlike daytime techniques, which often perform worse in nighttime scenes, it is essential for autonomous driving due to insufficient lighting, low illumination, dynamic lighting, shadow effects, and reduced contrast. We propose RHRSegNet, implementing a relighting model over a High-Resolution Network for semantic segmentation. RHRSegNet implements residual convolutional feature learning to handle complex lighting conditions. Our model then feeds the lightened scene feature maps into a high-resolution network for scene segmentation. The network consists of a convolutional producing feature maps with varying resolutions, achieving different levels of resolution through down-sampling and up-sampling. Large nighttime datasets are used for training and evaluation, such as NightCity, City-Scape, and Dark-Zurich datasets. Our proposed model increases the HRnet segmentation performance by 5% in low-light or nighttime images.
Related papers
- Exploring Reliable Matching with Phase Enhancement for Night-time Semantic Segmentation [58.180226179087086]
We propose a novel end-to-end optimized approach, named NightFormer, tailored for night-time semantic segmentation.
Specifically, we design a pixel-level texture enhancement module to acquire texture-aware features hierarchically with phase enhancement and amplified attention.
Our proposed method performs favorably against state-of-the-art night-time semantic segmentation methods.
arXiv Detail & Related papers (2024-08-25T13:59:31Z) - Seeing Motion at Nighttime with an Event Camera [17.355331119296782]
Event cameras react to dynamic with higher temporal resolution (microsecond) and higher dynamic range (120dB)
We propose a nighttime event reconstruction network (NER-Net) which mainly includes a learnable event timestamps calibration module (LETC)
We construct a paired real-light event dataset (RLED) through a co-axial imaging, including 64,200 spatially and temporally aligned image GTs and low-light events.
arXiv Detail & Related papers (2024-04-18T03:58:27Z) - Similarity Min-Max: Zero-Shot Day-Night Domain Adaptation [52.923298434948606]
Low-light conditions not only hamper human visual experience but also degrade the model's performance on downstream vision tasks.
This paper challenges a more complicated scenario with border applicability, i.e., zero-shot day-night domain adaptation.
We propose a similarity min-max paradigm that considers them under a unified framework.
arXiv Detail & Related papers (2023-07-17T18:50:15Z) - Disentangled Contrastive Image Translation for Nighttime Surveillance [87.03178320662592]
Nighttime surveillance suffers from degradation due to poor illumination and arduous human annotations.
Existing methods rely on multi-spectral images to perceive objects in the dark, which are troubled by low resolution and color absence.
We argue that the ultimate solution for nighttime surveillance is night-to-day translation, or Night2Day.
This paper contributes a new surveillance dataset called NightSuR. It includes six scenes to support the study on nighttime surveillance.
arXiv Detail & Related papers (2023-07-11T06:40:27Z) - Seeing Through The Noisy Dark: Toward Real-world Low-Light Image
Enhancement and Denoising [125.56062454927755]
Real-world low-light environment usually suffer from lower visibility and heavier noise, due to insufficient light or hardware limitation.
We propose a novel end-to-end method termed Real-world Low-light Enhancement & Denoising Network (RLED-Net)
arXiv Detail & Related papers (2022-10-02T14:57:23Z) - When the Sun Goes Down: Repairing Photometric Losses for All-Day Depth
Estimation [47.617222712429026]
We show how to use a combination of three techniques to allow the existing photometric losses to work for both day and nighttime images.
First, we introduce a per-pixel neural intensity transformation to compensate for the light changes that occur between successive frames.
Second, we predict a per-pixel residual flow map that we use to correct the reprojection correspondences induced by the estimated ego-motion and depth.
arXiv Detail & Related papers (2022-06-28T09:29:55Z) - NightLab: A Dual-level Architecture with Hardness Detection for
Segmentation at Night [6.666707251631694]
We propose NightLab, a novel nighttime segmentation framework.
Models at two levels of granularity, i.e. image and regional, and each level is composed of light adaptation and segmentation modules.
Experiments on the NightCity and BDD100K datasets show NightLab achieves State-of-The-Art (SoTA) performance compared to concurrent methods.
arXiv Detail & Related papers (2022-04-12T05:50:22Z) - Night-time Scene Parsing with a Large Real Dataset [67.11211537439152]
We aim to address the night-time scene parsing (NTSP) problem, which has two main challenges.
To tackle the scarcity of night-time data, we collect a novel labeled dataset, named it NightCity, of 4,297 real night-time images.
We also propose an exposure-aware framework to address the NTSP problem through augmenting the segmentation process with explicitly learned exposure features.
arXiv Detail & Related papers (2020-03-15T18:11:34Z) - HeatNet: Bridging the Day-Night Domain Gap in Semantic Segmentation with
Thermal Images [26.749261270690425]
Real-world driving scenarios entail adverse environmental conditions such as nighttime illumination or glare.
We propose a multimodal semantic segmentation model that can be applied during daytime and nighttime.
Besides RGB images, we leverage thermal images, making our network significantly more robust.
arXiv Detail & Related papers (2020-03-10T11:36:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.