Leveraging data-driven weather models for improving numerical weather prediction skill through large-scale spectral nudging
- URL: http://arxiv.org/abs/2407.06100v2
- Date: Wed, 24 Jul 2024 21:23:38 GMT
- Title: Leveraging data-driven weather models for improving numerical weather prediction skill through large-scale spectral nudging
- Authors: Syed Zahid Husain, Leo Separovic, Jean-François Caron, Rabah Aider, Mark Buehner, Stéphane Chamberland, Ervig Lapalme, Ron McTaggart-Cowan, Christopher Subich, Paul A. Vaillancourt, Jing Yang, Ayrton Zadra,
- Abstract summary: This study illustrates the relative strengths and weaknesses of physics-based and AI-based approaches to weather prediction.
A hybrid NWP-AI system is proposed, wherein GEM-predicted large-scale state variables are spectrally nudged toward GraphCast predictions.
Results indicate that this hybrid approach is capable of leveraging the strengths of GraphCast to enhance the prediction skill of the GEM model.
- Score: 1.747339718564314
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Operational meteorological forecasting has long relied on physics-based numerical weather prediction (NWP) models. Recently, this landscape is facing disruption by the advent of data-driven artificial intelligence (AI)-based weather models, which offer tremendous computational performance and competitive forecasting skill. However, data-driven models for medium-range forecasting generally suffer from major limitations, including low effective resolution and a narrow range of predicted variables. This study illustrates the relative strengths and weaknesses of these competing paradigms using the GEM (Global Environmental Multiscale) and GraphCast models to represent physics-based and AI-based approaches, respectively. By analyzing global predictions from these two models against observations and analyses in both physical and spectral spaces, this study demonstrates that GraphCast-predicted large scales outperform GEM, particularly for longer lead times. Building on this insight, a hybrid NWP-AI system is proposed, wherein GEM-predicted large-scale state variables are spectrally nudged toward GraphCast predictions, while allowing GEM to freely generate fine-scale details critical for weather extremes. Results indicate that this hybrid approach is capable of leveraging the strengths of GraphCast to enhance the prediction skill of the GEM model. Importantly, trajectories of tropical cyclones are predicted with enhanced accuracy without significant changes in intensity. Furthermore, this new hybrid system ensures that meteorologists have access to a complete set of forecast variables, including those relevant for high-impact weather events.
Related papers
- Deep Learning for Weather Forecasting: A CNN-LSTM Hybrid Model for Predicting Historical Temperature Data [7.559331742876793]
This study introduces a hybrid model combining Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks to predict historical temperature data.
CNNs are utilized for spatial feature extraction, while LSTMs handle temporal dependencies, resulting in significantly improved prediction accuracy and stability.
arXiv Detail & Related papers (2024-10-19T03:38:53Z) - Lightning-Fast Convective Outlooks: Predicting Severe Convective Environments with Global AI-based Weather Models [0.08271752505511926]
Severe convective storms are among the most dangerous weather phenomena and accurate forecasts mitigate their impacts.
Recently released suite of AI-based weather models produces medium-range forecasts within seconds.
We assess the forecast skill of three top-performing AI-models for convective parameters against reanalysis and ECMWF's operational numerical weather prediction model IFS.
arXiv Detail & Related papers (2024-06-13T07:46:03Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
This paper proposes a physics-AI hybrid model (i.e., WeatherGFT) which Generalizes weather forecasts to Finer-grained Temporal scales.
Specifically, we employ a carefully designed PDE kernel to simulate physical evolution on a small time scale.
We introduce a lead time-aware training framework to promote the generalization of the model at different lead times.
arXiv Detail & Related papers (2024-05-22T16:21:02Z) - Forecasting the Future with Future Technologies: Advancements in Large Meteorological Models [3.332582598089642]
The field of meteorological forecasting has undergone a significant transformation with the integration of large models.
Models like FourCastNet, Pangu-Weather, GraphCast, ClimaX, and FengWu have made notable contributions by providing accurate, high-resolution forecasts.
arXiv Detail & Related papers (2024-04-10T00:52:54Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation [67.20588721130623]
We develop an AI-based cyclic weather forecasting system, FengWu-4DVar.
FengWu-4DVar can incorporate observational data into the data-driven weather forecasting model.
Experiments on the simulated observational dataset demonstrate that FengWu-4DVar is capable of generating reasonable analysis fields.
arXiv Detail & Related papers (2023-12-16T02:07:56Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
We introduce a machine learning-based method called "GraphCast", which can be trained directly from reanalysis data.
It predicts hundreds of weather variables, over 10 days at 0.25 degree resolution globally, in under one minute.
We show that GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets.
arXiv Detail & Related papers (2022-12-24T18:15:39Z) - Improving data-driven global weather prediction using deep convolutional
neural networks on a cubed sphere [7.918783985810551]
We present a significantly-improved data-driven global weather forecasting framework using a deep convolutional neural network (CNN)
New developments in this framework include an offline volume-conservative mapping to a cubed-sphere grid.
Our model is able to learn to forecast complex surface temperature patterns from few input atmospheric state variables.
arXiv Detail & Related papers (2020-03-15T19:57:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.